Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,35 +11,14 @@ from bs4 import BeautifulSoup
|
|
11 |
import base64
|
12 |
import re
|
13 |
|
14 |
-
# Initialize OCR
|
15 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
16 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
17 |
reader = easyocr.Reader(['en'])
|
18 |
|
19 |
-
# ----------------- HTML
|
20 |
-
def
|
21 |
-
"""Extract
|
22 |
-
images = []
|
23 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
24 |
-
for img_tag in soup.find_all("img"):
|
25 |
-
src = img_tag.get("src")
|
26 |
-
if not src:
|
27 |
-
continue
|
28 |
-
if src.startswith("data:image"):
|
29 |
-
b64_data = re.sub(r"^data:image/.+;base64,", "", src)
|
30 |
-
image = Image.open(BytesIO(base64.b64decode(b64_data))).convert("RGB")
|
31 |
-
images.append(image)
|
32 |
-
else:
|
33 |
-
try:
|
34 |
-
response = requests.get(src)
|
35 |
-
image = Image.open(BytesIO(response.content)).convert("RGB")
|
36 |
-
images.append(image)
|
37 |
-
except:
|
38 |
-
continue
|
39 |
-
return images
|
40 |
-
|
41 |
-
def parse_html_words(html_file):
|
42 |
-
"""Extract words and lines from HTML with approximate bounding boxes"""
|
43 |
if hasattr(html_file, "read"):
|
44 |
html_content = html_file.read()
|
45 |
if isinstance(html_content, bytes):
|
@@ -47,18 +26,16 @@ def parse_html_words(html_file):
|
|
47 |
else:
|
48 |
html_content = str(html_file)
|
49 |
|
50 |
-
images_in_html = extract_images_from_html(html_content)
|
51 |
-
|
52 |
soup = BeautifulSoup(html_content, "html.parser")
|
|
|
53 |
words_json = []
|
54 |
-
|
55 |
y_offset = 0
|
56 |
line_height = 20
|
57 |
char_width = 10
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
text = block.get_text(separator=' ', strip=True)
|
62 |
if not text:
|
63 |
continue
|
64 |
|
@@ -71,15 +48,17 @@ def parse_html_words(html_file):
|
|
71 |
word_bbox = [x_offset, y_offset, x_offset + char_width * len(word), y_offset + line_height]
|
72 |
word_entries.append({
|
73 |
"text": word,
|
74 |
-
"bbox": word_bbox
|
|
|
75 |
})
|
76 |
words_json.append({
|
77 |
"text": word,
|
78 |
-
"bbox": word_bbox
|
|
|
79 |
})
|
80 |
x_offset += char_width * (len(word) + 1)
|
81 |
|
82 |
-
|
83 |
"text": text,
|
84 |
"bbox": line_bbox,
|
85 |
"words": word_entries
|
@@ -89,13 +68,12 @@ def parse_html_words(html_file):
|
|
89 |
|
90 |
output_json = {
|
91 |
"words": words_json,
|
92 |
-
"
|
93 |
-
"images_found": len(images_in_html)
|
94 |
}
|
95 |
|
96 |
-
return output_json
|
97 |
|
98 |
-
# ----------------- Image
|
99 |
def load_image(image_file, image_url):
|
100 |
if image_file:
|
101 |
return [image_file]
|
@@ -104,19 +82,19 @@ def load_image(image_file, image_url):
|
|
104 |
return [Image.open(BytesIO(response.content)).convert("RGB")]
|
105 |
return []
|
106 |
|
107 |
-
# ----------------- Main
|
108 |
def detect_text_combined(image_file, image_url, html_file):
|
109 |
-
# HTML
|
110 |
if html_file:
|
111 |
-
output_json
|
112 |
json_str = json.dumps(output_json, indent=2)
|
113 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w")
|
114 |
tmp_file.write(json_str)
|
115 |
tmp_file.close()
|
116 |
-
annotated_image =
|
117 |
return annotated_image, json_str, tmp_file.name
|
118 |
|
119 |
-
# Image
|
120 |
images = load_image(image_file, image_url)
|
121 |
if not images:
|
122 |
return None, "No input provided.", None
|
@@ -168,12 +146,12 @@ iface = gr.Interface(
|
|
168 |
gr.File(label="Upload HTML File", file_types=[".html", ".htm"])
|
169 |
],
|
170 |
outputs=[
|
171 |
-
gr.Image(type="pil", label="Annotated Image
|
172 |
gr.Textbox(label="JSON Output"),
|
173 |
gr.File(label="Download JSON")
|
174 |
],
|
175 |
title="Combined OCR & HTML Text Bounding Box Extractor",
|
176 |
-
description="Upload an image, provide an image URL, or upload an HTML file. Outputs word- and
|
177 |
)
|
178 |
|
179 |
if __name__ == "__main__":
|
|
|
11 |
import base64
|
12 |
import re
|
13 |
|
14 |
+
# ----------------- Initialize OCR -----------------
|
15 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
16 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
17 |
reader = easyocr.Reader(['en'])
|
18 |
|
19 |
+
# ----------------- HTML Parsing -----------------
|
20 |
+
def parse_html_to_json(html_file):
|
21 |
+
"""Extract words and paragraphs from HTML in the same structure as image OCR"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if hasattr(html_file, "read"):
|
23 |
html_content = html_file.read()
|
24 |
if isinstance(html_content, bytes):
|
|
|
26 |
else:
|
27 |
html_content = str(html_file)
|
28 |
|
|
|
|
|
29 |
soup = BeautifulSoup(html_content, "html.parser")
|
30 |
+
|
31 |
words_json = []
|
32 |
+
paragraphs_json = []
|
33 |
y_offset = 0
|
34 |
line_height = 20
|
35 |
char_width = 10
|
36 |
|
37 |
+
for tag in soup.find_all(True): # All tags
|
38 |
+
text = tag.get_text(separator=' ', strip=True)
|
|
|
39 |
if not text:
|
40 |
continue
|
41 |
|
|
|
48 |
word_bbox = [x_offset, y_offset, x_offset + char_width * len(word), y_offset + line_height]
|
49 |
word_entries.append({
|
50 |
"text": word,
|
51 |
+
"bbox": word_bbox,
|
52 |
+
"confidence": 1.0
|
53 |
})
|
54 |
words_json.append({
|
55 |
"text": word,
|
56 |
+
"bbox": word_bbox,
|
57 |
+
"confidence": 1.0
|
58 |
})
|
59 |
x_offset += char_width * (len(word) + 1)
|
60 |
|
61 |
+
paragraphs_json.append({
|
62 |
"text": text,
|
63 |
"bbox": line_bbox,
|
64 |
"words": word_entries
|
|
|
68 |
|
69 |
output_json = {
|
70 |
"words": words_json,
|
71 |
+
"paragraphs": paragraphs_json
|
|
|
72 |
}
|
73 |
|
74 |
+
return output_json
|
75 |
|
76 |
+
# ----------------- Image Loading -----------------
|
77 |
def load_image(image_file, image_url):
|
78 |
if image_file:
|
79 |
return [image_file]
|
|
|
82 |
return [Image.open(BytesIO(response.content)).convert("RGB")]
|
83 |
return []
|
84 |
|
85 |
+
# ----------------- Main Logic -----------------
|
86 |
def detect_text_combined(image_file, image_url, html_file):
|
87 |
+
# ----------------- HTML Path -----------------
|
88 |
if html_file:
|
89 |
+
output_json = parse_html_to_json(html_file)
|
90 |
json_str = json.dumps(output_json, indent=2)
|
91 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w")
|
92 |
tmp_file.write(json_str)
|
93 |
tmp_file.close()
|
94 |
+
annotated_image = None
|
95 |
return annotated_image, json_str, tmp_file.name
|
96 |
|
97 |
+
# ----------------- Image Path -----------------
|
98 |
images = load_image(image_file, image_url)
|
99 |
if not images:
|
100 |
return None, "No input provided.", None
|
|
|
146 |
gr.File(label="Upload HTML File", file_types=[".html", ".htm"])
|
147 |
],
|
148 |
outputs=[
|
149 |
+
gr.Image(type="pil", label="Annotated Image"),
|
150 |
gr.Textbox(label="JSON Output"),
|
151 |
gr.File(label="Download JSON")
|
152 |
],
|
153 |
title="Combined OCR & HTML Text Bounding Box Extractor",
|
154 |
+
description="Upload an image, provide an image URL, or upload an HTML file. Outputs word- and paragraph-level bounding boxes in JSON format consistent with image OCR output."
|
155 |
)
|
156 |
|
157 |
if __name__ == "__main__":
|