File size: 50,927 Bytes
30f8a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
from mmgp import offload
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.distributed as dist
import numpy as np
from tqdm import tqdm
from PIL import Image
import torchvision.transforms.functional as TF
import torch.nn.functional as F
from .distributed.fsdp import shard_model
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from .modules.clip import CLIPModel
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
                               get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from wan.modules.posemb_layers import get_rotary_pos_embed
from .utils.vace_preprocessor import VaceVideoProcessor
from wan.utils.basic_flowmatch import FlowMatchScheduler
from wan.utils.utils import get_outpainting_frame_location, resize_lanczos, calculate_new_dimensions
from .multitalk.multitalk_utils import MomentumBuffer, adaptive_projected_guidance, match_and_blend_colors, match_and_blend_colors_with_mask
from mmgp import safetensors2

def optimized_scale(positive_flat, negative_flat):

    # Calculate dot production
    dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)

    # Squared norm of uncondition
    squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8

    # st_star = v_cond^T * v_uncond / ||v_uncond||^2
    st_star = dot_product / squared_norm
    
    return st_star

def timestep_transform(t, shift=5.0, num_timesteps=1000 ):
    t = t / num_timesteps
    # shift the timestep based on ratio
    new_t = shift * t / (1 + (shift - 1) * t)
    new_t = new_t * num_timesteps
    return new_t
    
    
class WanAny2V:

    def __init__(
        self,
        config,
        checkpoint_dir,
        model_filename = None,
        model_type = None, 
        model_def = None,
        base_model_type = None,
        text_encoder_filename = None,
        quantizeTransformer = False,
        save_quantized = False,
        dtype = torch.bfloat16,
        VAE_dtype = torch.float32,
        mixed_precision_transformer = False
    ):
        self.device = torch.device(f"cuda")
        self.config = config
        self.VAE_dtype = VAE_dtype
        self.dtype = dtype
        self.num_train_timesteps = config.num_train_timesteps
        self.param_dtype = config.param_dtype
        self.model_def = model_def
        self.model2 = None
        self.transformer_switch = model_def.get("URLs2", None) is not None
        self.text_encoder = T5EncoderModel(
            text_len=config.text_len,
            dtype=config.t5_dtype,
            device=torch.device('cpu'),
            checkpoint_path=text_encoder_filename,
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
            shard_fn= None)

        # base_model_type = "i2v2_2"
        if hasattr(config, "clip_checkpoint") and not base_model_type in ["i2v_2_2"]:
            self.clip = CLIPModel(
                dtype=config.clip_dtype,
                device=self.device,
                checkpoint_path=os.path.join(checkpoint_dir , 
                                            config.clip_checkpoint),
                tokenizer_path=os.path.join(checkpoint_dir ,  config.clip_tokenizer))

        self.vae_stride = config.vae_stride
        self.patch_size = config.patch_size 
        
        self.vae = WanVAE(
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
            device=self.device)
        
        # config_filename= "configs/t2v_1.3B.json"
        # import json
        # with open(config_filename, 'r', encoding='utf-8') as f:
        #     config = json.load(f)
        # sd = safetensors2.torch_load_file(xmodel_filename)
        # model_filename = "c:/temp/wan2.2i2v/low/diffusion_pytorch_model-00001-of-00006.safetensors"
        base_config_file = f"configs/{base_model_type}.json"
        forcedConfigPath = base_config_file if len(model_filename) > 1 else None
        # forcedConfigPath = base_config_file = f"configs/flf2v_720p.json"
        # model_filename[1] = xmodel_filename

        if self.transformer_switch:
            shared_modules= {}
            self.model = offload.fast_load_transformers_model(model_filename[:1], modules = model_filename[2:], modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath,  return_shared_modules= shared_modules)
            self.model2 = offload.fast_load_transformers_model(model_filename[1:2], modules = shared_modules, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath)
            shared_modules = None
        else:
            self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath)
        
        # self.model = offload.load_model_data(self.model, xmodel_filename )
        # offload.load_model_data(self.model, "c:/temp/Phantom-Wan-1.3B.pth")

        self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
        offload.change_dtype(self.model, dtype, True)
        if self.model2 is not None:
            self.model2.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
            offload.change_dtype(self.model2, dtype, True)

        # offload.save_model(self.model, "wan2.1_text2video_1.3B_mbf16.safetensors", do_quantize= False, config_file_path=base_config_file, filter_sd=sd)
        # offload.save_model(self.model, "wan2.2_image2video_14B_low_mbf16.safetensors",  config_file_path=base_config_file)
        # offload.save_model(self.model, "wan2.2_image2video_14B_low_quanto_mbf16_int8.safetensors", do_quantize=True, config_file_path=base_config_file)
        self.model.eval().requires_grad_(False)
        if self.model2 is not None:
            self.model2.eval().requires_grad_(False)
        if save_quantized:
            from wgp import save_quantized_model
            save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file)
            if self.model2 is not None:
                save_quantized_model(self.model2, model_type, model_filename[1], dtype, base_config_file, submodel_no=2)
        self.sample_neg_prompt = config.sample_neg_prompt

        if self.model.config.get("vace_in_dim", None) != None:
            self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
                                            min_area=480*832,
                                            max_area=480*832,
                                            min_fps=config.sample_fps,
                                            max_fps=config.sample_fps,
                                            zero_start=True,
                                            seq_len=32760,
                                            keep_last=True)

            self.adapt_vace_model(self.model)
            if self.model2 is not None: self.adapt_vace_model(self.model2)

        self.num_timesteps = 1000 
        self.use_timestep_transform = True 

    def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None):
        if ref_images is None:
            ref_images = [None] * len(frames)
        else:
            assert len(frames) == len(ref_images)

        if masks is None:
            latents = self.vae.encode(frames, tile_size = tile_size)
        else:
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
            inactive = self.vae.encode(inactive, tile_size = tile_size)

            if overlapped_latents  != None and False : # disabled as quality seems worse
                # inactive[0][:, 0:1] = self.vae.encode([frames[0][:, 0:1]], tile_size = tile_size)[0] # redundant
                for t in inactive:
                    t[:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents
                overlapped_latents[: 0:1] = inactive[0][: 0:1]

            reactive = self.vae.encode(reactive, tile_size = tile_size)
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]

        cat_latents = []
        for latent, refs in zip(latents, ref_images):
            if refs is not None:
                if masks is None:
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
                else:
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
                assert all([x.shape[1] == 1 for x in ref_latent])
                latent = torch.cat([*ref_latent, latent], dim=1)
            cat_latents.append(latent)
        return cat_latents

    def vace_encode_masks(self, masks, ref_images=None):
        if ref_images is None:
            ref_images = [None] * len(masks)
        else:
            assert len(masks) == len(ref_images)

        result_masks = []
        for mask, refs in zip(masks, ref_images):
            c, depth, height, width = mask.shape
            new_depth = int((depth + 3) // self.vae_stride[0]) # nb latents token without (ref tokens not included)
            height = 2 * (int(height) // (self.vae_stride[1] * 2))
            width = 2 * (int(width) // (self.vae_stride[2] * 2))

            # reshape
            mask = mask[0, :, :, :]
            mask = mask.view(
                depth, height, self.vae_stride[1], width, self.vae_stride[1]
            )  # depth, height, 8, width, 8
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
            mask = mask.reshape(
                self.vae_stride[1] * self.vae_stride[2], depth, height, width
            )  # 8*8, depth, height, width

            # interpolation
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)

            if refs is not None:
                length = len(refs)
                mask_pad = torch.zeros(mask.shape[0], length, *mask.shape[-2:], dtype=mask.dtype, device=mask.device)
                mask = torch.cat((mask_pad, mask), dim=1)
            result_masks.append(mask)
        return result_masks

    def vace_latent(self, z, m):
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]

    def fit_image_into_canvas(self, ref_img, image_size, canvas_tf_bg, device, fill_max = False, outpainting_dims = None, return_mask = False):
        from wan.utils.utils import save_image
        ref_width, ref_height = ref_img.size
        if (ref_height, ref_width) == image_size and outpainting_dims  == None:
            ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
            canvas = torch.zeros_like(ref_img) if return_mask else None
        else:
            if outpainting_dims != None:
                final_height, final_width = image_size
                canvas_height, canvas_width, margin_top, margin_left =   get_outpainting_frame_location(final_height, final_width,  outpainting_dims, 8)        
            else:
                canvas_height, canvas_width = image_size
            scale = min(canvas_height / ref_height, canvas_width / ref_width)
            new_height = int(ref_height * scale)
            new_width = int(ref_width * scale)
            if fill_max  and (canvas_height - new_height) < 16:
                new_height = canvas_height
            if fill_max  and (canvas_width - new_width) < 16:
                new_width = canvas_width
            top = (canvas_height - new_height) // 2
            left = (canvas_width - new_width) // 2
            ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS) 
            ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
            if outpainting_dims != None:
                canvas = torch.full((3, 1, final_height, final_width), canvas_tf_bg, dtype= torch.float, device=device) # [-1, 1]
                canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img 
            else:
                canvas = torch.full((3, 1, canvas_height, canvas_width), canvas_tf_bg, dtype= torch.float, device=device) # [-1, 1]
                canvas[:, :, top:top + new_height, left:left + new_width] = ref_img 
            ref_img = canvas
            canvas = None
            if return_mask:
                if outpainting_dims != None:
                    canvas = torch.ones((3, 1, final_height, final_width), dtype= torch.float, device=device) # [-1, 1]
                    canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0
                else:
                    canvas = torch.ones((3, 1, canvas_height, canvas_width), dtype= torch.float, device=device) # [-1, 1]
                    canvas[:, :, top:top + new_height, left:left + new_width] = 0
                canvas = canvas.to(device)
        return ref_img.to(device), canvas

    def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size,  device, keep_video_guide_frames= [], start_frame = 0,  fit_into_canvas = None, pre_src_video = None, inject_frames = [], outpainting_dims = None, any_background_ref = False):
        image_sizes = []
        trim_video_guide = len(keep_video_guide_frames)
        def conv_tensor(t, device):
            return t.float().div_(127.5).add_(-1).permute(3, 0, 1, 2).to(device)

        for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
            prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
            num_frames = total_frames - prepend_count            
            num_frames = min(num_frames, trim_video_guide) if trim_video_guide > 0 and sub_src_video != None else num_frames
            if sub_src_mask is not None and sub_src_video is not None:
                src_video[i] = conv_tensor(sub_src_video[:num_frames], device)
                src_mask[i] = conv_tensor(sub_src_mask[:num_frames], device)
                # src_video is [-1, 1] (at this function output), 0 = inpainting area (in fact 127  in [0, 255])
                # src_mask is [-1, 1] (at this function output), 0 = preserve original video (in fact 127  in [0, 255]) and 1 = Inpainting (in fact 255  in [0, 255])
                if prepend_count > 0:
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
                    src_mask[i] =  torch.cat( [torch.full_like(sub_pre_src_video, -1.0), src_mask[i]] ,1)
                src_video_shape = src_video[i].shape
                if src_video_shape[1] != total_frames:
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
                src_mask[i] = torch.clamp((src_mask[i][:, :, :, :] + 1) / 2, min=0, max=1)
                image_sizes.append(src_video[i].shape[2:])
            elif sub_src_video is None:
                if prepend_count > 0:
                    src_video[i] =  torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
                else:
                    src_video[i] = torch.zeros((3, total_frames, image_size[0], image_size[1]), device=device)
                    src_mask[i] = torch.ones_like(src_video[i], device=device)
                image_sizes.append(image_size)
            else:
                src_video[i] = conv_tensor(sub_src_video[:num_frames], device)
                src_mask[i] = torch.ones_like(src_video[i], device=device)
                if prepend_count > 0:
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
                src_video_shape = src_video[i].shape
                if src_video_shape[1] != total_frames:
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
                image_sizes.append(src_video[i].shape[2:])
            for k, keep in enumerate(keep_video_guide_frames):
                if not keep:
                    pos = prepend_count + k
                    src_video[i][:, pos:pos+1] = 0
                    src_mask[i][:, pos:pos+1] = 1

            for k, frame in enumerate(inject_frames):
                if frame != None:
                    pos = prepend_count + k
                    src_video[i][:, pos:pos+1], src_mask[i][:, pos:pos+1] = self.fit_image_into_canvas(frame, image_size, 0, device, True, outpainting_dims, return_mask= True)
        

        self.background_mask = None
        for i, ref_images in enumerate(src_ref_images):
            if ref_images is not None:
                image_size = image_sizes[i]
                for j, ref_img in enumerate(ref_images):
                    if ref_img is not None and not torch.is_tensor(ref_img):
                        if j==0 and any_background_ref:
                            if self.background_mask == None: self.background_mask = [None] * len(src_ref_images) 
                            src_ref_images[i][j], self.background_mask[i] = self.fit_image_into_canvas(ref_img, image_size, 0, device, True, outpainting_dims, return_mask= True)
                        else:
                            src_ref_images[i][j], _ = self.fit_image_into_canvas(ref_img, image_size, 1, device)
        if self.background_mask != None:
            self.background_mask = [ item if item != None else self.background_mask[0] for item in self.background_mask ] # deplicate background mask with double control net since first controlnet image ref modifed by ref
        return src_video, src_mask, src_ref_images

    def get_vae_latents(self, ref_images, device, tile_size= 0):
        ref_vae_latents = []
        for ref_image in ref_images:
            ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device)
            img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size)
            ref_vae_latents.append(img_vae_latent[0])
                    
        return torch.cat(ref_vae_latents, dim=1)


    def generate(self,
        input_prompt,
        input_frames= None,
        input_masks = None,
        input_ref_images = None,      
        input_video = None,
        image_start = None,
        image_end = None,
        denoising_strength = 1.0,
        target_camera=None,                  
        context_scale=None,
        width = 1280,
        height = 720,
        fit_into_canvas = True,
        frame_num=81,
        batch_size = 1,
        shift=5.0,
        sample_solver='unipc',
        sampling_steps=50,
        guide_scale=5.0,
        guide2_scale = 5.0,
        switch_threshold = 0,
        n_prompt="",
        seed=-1,
        callback = None,
        enable_RIFLEx = None,
        VAE_tile_size = 0,
        joint_pass = False,
        slg_layers = None,
        slg_start = 0.0,
        slg_end = 1.0,
        cfg_star_switch = True,
        cfg_zero_step = 5,
        audio_scale=None,
        audio_cfg_scale=None,
        audio_proj=None,
        audio_context_lens=None,
        overlapped_latents  = None,
        return_latent_slice = None,
        overlap_noise = 0,
        conditioning_latents_size = 0,
        keep_frames_parsed = [],
        model_type = None,
        model_mode = None,
        loras_slists = None,
        NAG_scale = 0,
        NAG_tau = 3.5,
        NAG_alpha = 0.5,
        offloadobj = None,
        apg_switch = False,
        speakers_bboxes = None,
        color_correction_strength = 1,
        prefix_frames_count = 0,
        image_mode = 0,

        **bbargs
                ):
        
        if sample_solver =="euler":
            # prepare timesteps
            timesteps = list(np.linspace(self.num_timesteps, 1, sampling_steps, dtype=np.float32))
            timesteps.append(0.)
            timesteps = [torch.tensor([t], device=self.device) for t in timesteps]
            if self.use_timestep_transform:
                timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps][:-1]    
            sample_scheduler = None                  
        elif sample_solver == 'causvid':
            sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True)
            timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74])[:sampling_steps].to(self.device)
            sample_scheduler.timesteps =timesteps
            sample_scheduler.sigmas = torch.cat([sample_scheduler.timesteps / 1000, torch.tensor([0.], device=self.device)])
        elif sample_solver == 'unipc' or sample_solver == "":
            sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False)
            sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift)
            
            timesteps = sample_scheduler.timesteps
        elif sample_solver == 'dpm++':
            sample_scheduler = FlowDPMSolverMultistepScheduler(
                num_train_timesteps=self.num_train_timesteps,
                shift=1,
                use_dynamic_shifting=False)
            sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
            timesteps, _ = retrieve_timesteps(
                sample_scheduler,
                device=self.device,
                sigmas=sampling_sigmas)
        else:
            raise NotImplementedError(f"Unsupported Scheduler {sample_solver}")

        seed_g = torch.Generator(device=self.device)
        seed_g.manual_seed(seed)
        image_outputs = image_mode == 1
        kwargs = {'pipeline': self, 'callback': callback}
        color_reference_frame = None
        if self._interrupt:
            return None
        
        # Text Encoder
        if n_prompt == "":
            n_prompt = self.sample_neg_prompt
        context = self.text_encoder([input_prompt], self.device)[0]
        context_null = self.text_encoder([n_prompt], self.device)[0]
        context = context.to(self.dtype)
        context_null = context_null.to(self.dtype)
        text_len = self.model.text_len
        context = torch.cat([context, context.new_zeros(text_len -context.size(0), context.size(1)) ]).unsqueeze(0) 
        context_null = torch.cat([context_null, context_null.new_zeros(text_len -context_null.size(0), context_null.size(1)) ]).unsqueeze(0) 
        # NAG_prompt =  "static, low resolution, blurry"
        # context_NAG = self.text_encoder([NAG_prompt], self.device)[0]
        # context_NAG = context_NAG.to(self.dtype)
        # context_NAG = torch.cat([context_NAG, context_NAG.new_zeros(text_len -context_NAG.size(0), context_NAG.size(1)) ]).unsqueeze(0) 
        
        # from mmgp import offload
        # offloadobj.unload_all()

        offload.shared_state.update({"_nag_scale" : NAG_scale, "_nag_tau" : NAG_tau, "_nag_alpha":  NAG_alpha })
        if NAG_scale > 1: context = torch.cat([context, context_null], dim=0)
        # if NAG_scale > 1: context = torch.cat([context, context_NAG], dim=0)
        if self._interrupt: return None

        vace = model_type in ["vace_1.3B","vace_14B", "vace_multitalk_14B"]
        phantom = model_type in ["phantom_1.3B", "phantom_14B"]
        fantasy = model_type in ["fantasy"]
        multitalk = model_type in ["multitalk", "vace_multitalk_14B"]
        recam = model_type in ["recam_1.3B"]

        ref_images_count = 0
        trim_frames = 0
        extended_overlapped_latents = None

        lat_frames = int((frame_num - 1) // self.vae_stride[0]) + 1
        # image2video 
        if model_type in ["i2v", "i2v_2_2", "fantasy", "multitalk", "flf2v_720p"]:
            any_end_frame = False
            if image_start is None:
                _ , preframes_count, height, width = input_video.shape
                lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2]
                if hasattr(self, "clip"):
                    clip_image_size = self.clip.model.image_size
                    clip_image = resize_lanczos(input_video[:, -1], clip_image_size, clip_image_size)[:, None, :, :]
                    clip_context = self.clip.visual([clip_image]) if model_type != "flf2v_720p" else self.clip.visual([clip_image , clip_image ])
                    clip_image = None
                else:
                    clip_context = None
                input_video = input_video.to(device=self.device).to(dtype= self.VAE_dtype)
                enc =  torch.concat( [input_video, torch.zeros( (3, frame_num-preframes_count, height, width), 
                                     device=self.device, dtype= self.VAE_dtype)], 
                                     dim = 1).to(self.device)
                color_reference_frame = input_video[:, -1:].clone()
                input_video = None
            else:
                preframes_count = 1
                any_end_frame = image_end is not None 
                add_frames_for_end_image = any_end_frame and model_type == "i2v"
                if any_end_frame:
                    if add_frames_for_end_image:
                        frame_num +=1
                        lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2)
                        trim_frames = 1
                
                height, width = image_start.shape[1:]

                lat_h = round(
                    height // self.vae_stride[1] //
                    self.patch_size[1] * self.patch_size[1])
                lat_w = round(
                    width // self.vae_stride[2] //
                    self.patch_size[2] * self.patch_size[2])
                height = lat_h * self.vae_stride[1]
                width = lat_w * self.vae_stride[2]
                image_start_frame = image_start.unsqueeze(1).to(self.device)
                color_reference_frame = image_start_frame.clone()
                if image_end is not None:
                    img_end_frame = image_end.unsqueeze(1).to(self.device)

                if hasattr(self, "clip"):                                   
                    clip_image_size = self.clip.model.image_size
                    image_start = resize_lanczos(image_start, clip_image_size, clip_image_size)
                    if image_end is not None: image_end = resize_lanczos(image_end, clip_image_size, clip_image_size)
                    if model_type == "flf2v_720p":                    
                        clip_context = self.clip.visual([image_start[:, None, :, :], image_end[:, None, :, :] if image_end is not None else image_start[:, None, :, :]])
                    else:
                        clip_context = self.clip.visual([image_start[:, None, :, :]])
                else:
                    clip_context = None

                if any_end_frame:
                    enc= torch.concat([
                            image_start_frame,
                            torch.zeros( (3, frame_num-2,  height, width), device=self.device, dtype= self.VAE_dtype),
                            img_end_frame,
                    ], dim=1).to(self.device)
                else:
                    enc= torch.concat([
                            image_start_frame,
                            torch.zeros( (3, frame_num-1, height, width), device=self.device, dtype= self.VAE_dtype)
                    ], dim=1).to(self.device)

                image_start = image_end = image_start_frame = img_end_frame = None

            msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device)
            if any_end_frame:
                msk[:, preframes_count: -1] = 0
                if add_frames_for_end_image:
                    msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1)
                else:
                    msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1)
            else:
                msk[:, preframes_count:] = 0
                msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1)
            msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
            msk = msk.transpose(1, 2)[0]


            lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0]
            overlapped_latents_frames_num = int(1 + (preframes_count-1) // 4)
            if overlapped_latents != None:
                # disabled because looks worse
                if False and overlapped_latents_frames_num > 1: lat_y[:, :, 1:overlapped_latents_frames_num]  = overlapped_latents[:, 1:]
                extended_overlapped_latents = lat_y[:, :overlapped_latents_frames_num].clone().unsqueeze(0)
            y = torch.concat([msk, lat_y])
            lat_y = None
            kwargs.update({ 'y': y})
            if not clip_context is None:
                kwargs.update({'clip_fea': clip_context})

        # Recam Master
        if recam:
            # should be be in fact in input_frames since it is control video not a video to be extended
            target_camera = model_mode
            width = input_video.shape[2]
            height = input_video.shape[1]
            input_video = input_video.to(dtype=self.dtype , device=self.device)
            source_latents = self.vae.encode([input_video])[0] #.to(dtype=self.dtype, device=self.device)
            del input_video
            # Process target camera (recammaster)
            from wan.utils.cammmaster_tools import get_camera_embedding
            cam_emb = get_camera_embedding(target_camera)       
            cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
            kwargs['cam_emb'] = cam_emb

        # Video 2 Video
        if denoising_strength < 1. and input_frames != None:
            height, width = input_frames.shape[-2:]
            source_latents = self.vae.encode([input_frames])[0]
            injection_denoising_step = 0
            inject_from_start = False
            if input_frames != None and denoising_strength < 1 :
                color_reference_frame = input_frames[:, -1:].clone()
                if overlapped_latents != None:
                    overlapped_latents_frames_num = overlapped_latents.shape[2]
                    overlapped_frames_num = (overlapped_latents_frames_num-1) * 4 + 1
                else: 
                    overlapped_latents_frames_num = overlapped_frames_num  = 0
                if len(keep_frames_parsed) == 0  or image_outputs or  (overlapped_frames_num + len(keep_frames_parsed)) == input_frames.shape[1] and all(keep_frames_parsed) : keep_frames_parsed = [] 
                injection_denoising_step = int(sampling_steps * (1. - denoising_strength) )
                latent_keep_frames = []
                if source_latents.shape[1] < lat_frames or len(keep_frames_parsed) > 0:
                    inject_from_start = True
                    if len(keep_frames_parsed) >0 :
                        if overlapped_frames_num > 0: keep_frames_parsed = [True] * overlapped_frames_num + keep_frames_parsed
                        latent_keep_frames =[keep_frames_parsed[0]]
                        for i in range(1, len(keep_frames_parsed), 4):
                            latent_keep_frames.append(all(keep_frames_parsed[i:i+4]))
                else:
                    timesteps = timesteps[injection_denoising_step:]
                    if hasattr(sample_scheduler, "timesteps"): sample_scheduler.timesteps = timesteps
                    if hasattr(sample_scheduler, "sigmas"): sample_scheduler.sigmas= sample_scheduler.sigmas[injection_denoising_step:]
                    injection_denoising_step = 0

        # Phantom
        if phantom:
            input_ref_images_neg = None
            if input_ref_images != None: # Phantom Ref images
                input_ref_images = self.get_vae_latents(input_ref_images, self.device)
                input_ref_images_neg = torch.zeros_like(input_ref_images)
                ref_images_count = input_ref_images.shape[1] if input_ref_images != None else 0
                trim_frames = input_ref_images.shape[1]

        # Vace
        if vace :
            # vace context encode
            input_frames = [u.to(self.device) for u in input_frames]
            input_ref_images = [ None if u == None else [v.to(self.device) for v in u]  for u in input_ref_images]
            input_masks = [u.to(self.device) for u in input_masks]
            if self.background_mask != None: self.background_mask = [m.to(self.device) for m in self.background_mask]
            z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents )
            m0 = self.vace_encode_masks(input_masks, input_ref_images)
            if self.background_mask != None:
                color_reference_frame = input_ref_images[0][0].clone()
                zbg = self.vace_encode_frames([ref_img[0] for ref_img in input_ref_images], None, masks=self.background_mask, tile_size = VAE_tile_size )
                mbg = self.vace_encode_masks(self.background_mask, None)
                for zz0, mm0, zzbg, mmbg in zip(z0, m0, zbg, mbg):
                    zz0[:, 0:1] = zzbg
                    mm0[:, 0:1] = mmbg

                self.background_mask = zz0 = mm0 = zzbg = mmbg = None
            z = self.vace_latent(z0, m0)

            ref_images_count = len(input_ref_images[0]) if input_ref_images != None and input_ref_images[0] != None else 0
            context_scale = context_scale if context_scale != None else [1.0] * len(z)
            kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale, "ref_images_count": ref_images_count })
            if overlapped_latents != None :
                overlapped_latents_size = overlapped_latents.shape[2]
                extended_overlapped_latents = z[0][:16, :overlapped_latents_size + ref_images_count].clone().unsqueeze(0)
            if prefix_frames_count > 0:
                color_reference_frame = input_frames[0][:, prefix_frames_count -1:prefix_frames_count].clone()

            target_shape = list(z0[0].shape)
            target_shape[0] = int(target_shape[0] / 2)
            lat_h, lat_w = target_shape[-2:] 
            height = self.vae_stride[1] * lat_h
            width = self.vae_stride[2] * lat_w

        else:
            target_shape = (self.vae.model.z_dim, lat_frames + ref_images_count, height // self.vae_stride[1], width // self.vae_stride[2])

        if multitalk and audio_proj != None:
            from wan.multitalk.multitalk import get_target_masks
            audio_proj = [audio.to(self.dtype) for audio in audio_proj]
            human_no = len(audio_proj[0])
            token_ref_target_masks = get_target_masks(human_no, lat_h, lat_w, height, width, face_scale = 0.05, bbox = speakers_bboxes).to(self.dtype) if human_no > 1 else None

        if fantasy and audio_proj != None:
            kwargs.update({ "audio_proj": audio_proj.to(self.dtype), "audio_context_lens": audio_context_lens, }) 


        if self._interrupt:
            return None

        expand_shape = [batch_size] + [-1] * len(target_shape)
        # Ropes
        if target_camera != None:
            shape = list(target_shape[1:])
            shape[0] *= 2
            freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) 
        else:
            freqs = get_rotary_pos_embed(target_shape[1:], enable_RIFLEx= enable_RIFLEx) 

        kwargs["freqs"] = freqs

        # Steps Skipping
        cache_type = self.model.enable_cache 
        if cache_type != None:
            x_count = 3 if phantom or fantasy or multitalk else 2
            self.model.previous_residual = [None] * x_count
            if cache_type == "tea":
                self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.cache_multiplier)
            else: 
                self.model.compute_magcache_threshold(self.model.cache_start_step, timesteps, self.model.cache_multiplier)
                self.model.accumulated_err, self.model.accumulated_steps, self.model.accumulated_ratio  = [0.0] * x_count, [0] * x_count, [1.0] * x_count
                self.model.one_for_all = x_count > 2

        if callback != None:
            callback(-1, None, True)

        offload.shared_state["_chipmunk"] =  False
        chipmunk = offload.shared_state.get("_chipmunk", False)        
        if chipmunk:
            self.model.setup_chipmunk()

        # init denoising
        updated_num_steps= len(timesteps)
        if callback != None:
            from wan.utils.loras_mutipliers import update_loras_slists
            model_switch_step = updated_num_steps
            for i, t in enumerate(timesteps):
                if t <= switch_threshold:
                    model_switch_step = i
                    break
            update_loras_slists(self.model, loras_slists, updated_num_steps, model_switch_step= model_switch_step)
            callback(-1, None, True, override_num_inference_steps = updated_num_steps)

        if sample_scheduler != None:
            scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g}
        # b, c, lat_f, lat_h, lat_w
        latents = torch.randn(batch_size, *target_shape, dtype=torch.float32, device=self.device, generator=seed_g)
        if apg_switch != 0:  
            apg_momentum = -0.75
            apg_norm_threshold = 55
            text_momentumbuffer  = MomentumBuffer(apg_momentum) 
            audio_momentumbuffer = MomentumBuffer(apg_momentum) 

        guidance_switch_done = False

        # denoising
        trans = self.model
        for i, t in enumerate(tqdm(timesteps)):
            if not guidance_switch_done and t <= switch_threshold:
                guide_scale = guide2_scale
                if self.model2 is not None: trans = self.model2
                guidance_switch_done = True
 
            offload.set_step_no_for_lora(trans, i)
            timestep = torch.stack([t])
            kwargs.update({"t": timestep, "current_step": i})  
            kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None

            if denoising_strength < 1 and input_frames != None and i <= injection_denoising_step:
                sigma = t / 1000
                noise = torch.randn(batch_size, *target_shape, dtype=torch.float32, device=self.device, generator=seed_g)
                if inject_from_start:
                    new_latents = latents.clone()
                    new_latents[:,:, :source_latents.shape[1] ] = noise[:, :, :source_latents.shape[1] ] * sigma + (1 - sigma) * source_latents.unsqueeze(0)
                    for latent_no, keep_latent in enumerate(latent_keep_frames):
                        if not keep_latent:
                            new_latents[:, :, latent_no:latent_no+1 ] = latents[:, :, latent_no:latent_no+1]
                    latents = new_latents
                    new_latents = None
                else:
                    latents = noise * sigma + (1 - sigma) * source_latents.unsqueeze(0)
                noise = None

            if extended_overlapped_latents != None:
                latent_noise_factor = t / 1000
                latents[:, :, :extended_overlapped_latents.shape[2]]   = extended_overlapped_latents  * (1.0 - latent_noise_factor) + torch.randn_like(extended_overlapped_latents ) * latent_noise_factor 
                if vace:
                    overlap_noise_factor = overlap_noise / 1000 
                    for zz in z:
                        zz[0:16, ref_images_count:extended_overlapped_latents.shape[2] ]   = extended_overlapped_latents[0, :, ref_images_count:]  * (1.0 - overlap_noise_factor) + torch.randn_like(extended_overlapped_latents[0, :, ref_images_count:] ) * overlap_noise_factor 

            if target_camera != None:
                latent_model_input = torch.cat([latents, source_latents.unsqueeze(0).expand(*expand_shape)], dim=2) # !!!!
            else:
                latent_model_input = latents

            if phantom:
                gen_args = {
                    "x" : ([ torch.cat([latent_model_input[:,:, :-ref_images_count], input_ref_images.unsqueeze(0).expand(*expand_shape)], dim=2) ] * 2 + 
                        [ torch.cat([latent_model_input[:,:, :-ref_images_count], input_ref_images_neg.unsqueeze(0).expand(*expand_shape)], dim=2)]),
                    "context": [context, context_null, context_null] ,
                }
            elif fantasy:
                gen_args = {
                    "x" : [latent_model_input, latent_model_input, latent_model_input],
                    "context" : [context, context_null, context_null],
                    "audio_scale": [audio_scale, None, None ]
                }
            elif multitalk and audio_proj != None:
                gen_args = {
                    "x" : [latent_model_input, latent_model_input, latent_model_input],
                    "context" : [context, context_null, context_null],
                    "multitalk_audio": [audio_proj, audio_proj, [torch.zeros_like(audio_proj[0][-1:]), torch.zeros_like(audio_proj[1][-1:])]],
                    "multitalk_masks": [token_ref_target_masks, token_ref_target_masks, None]
                }
            else:
                gen_args = {
                    "x" : [latent_model_input, latent_model_input],
                    "context": [context, context_null]
                }

            if joint_pass and guide_scale > 1:
                ret_values = trans( **gen_args , **kwargs)
                if self._interrupt:
                    return None               
            else:
                size = 1 if guide_scale == 1 else len(gen_args["x"])
                ret_values = [None] * size
                for x_id in range(size):
                    sub_gen_args = {k : [v[x_id]] for k, v in gen_args.items() }
                    ret_values[x_id] = trans( **sub_gen_args, x_id= x_id , **kwargs)[0]
                    if self._interrupt:
                        return None               
                sub_gen_args = None
            if guide_scale == 1:
                noise_pred = ret_values[0]                
            elif phantom:
                guide_scale_img= 5.0
                guide_scale_text= guide_scale #7.5
                pos_it, pos_i, neg = ret_values
                noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i)
                pos_it = pos_i = neg = None
            elif fantasy:
                noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = ret_values
                noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond  - noise_pred_noaudio) 
                noise_pred_noaudio = None
            elif multitalk and audio_proj != None:
                noise_pred_cond, noise_pred_drop_text, noise_pred_uncond = ret_values
                if apg_switch != 0:
                    noise_pred = noise_pred_cond + (guide_scale - 1) * adaptive_projected_guidance(noise_pred_cond - noise_pred_drop_text, 
                                                                                                        noise_pred_cond, 
                                                                                                        momentum_buffer=text_momentumbuffer, 
                                                                                                        norm_threshold=apg_norm_threshold) \
                            + (audio_cfg_scale - 1) * adaptive_projected_guidance(noise_pred_drop_text - noise_pred_uncond, 
                                                                                    noise_pred_cond, 
                                                                                    momentum_buffer=audio_momentumbuffer, 
                                                                                    norm_threshold=apg_norm_threshold)
                else:
                    noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_drop_text) + audio_cfg_scale * (noise_pred_drop_text - noise_pred_uncond)  
                    noise_pred_uncond = noise_pred_cond = noise_pred_drop_text =  None
            else:
                noise_pred_cond, noise_pred_uncond = ret_values
                if apg_switch != 0:
                    noise_pred = noise_pred_cond + (guide_scale - 1) * adaptive_projected_guidance(noise_pred_cond - noise_pred_uncond, 
                                                                                                        noise_pred_cond, 
                                                                                                        momentum_buffer=text_momentumbuffer, 
                                                                                                        norm_threshold=apg_norm_threshold)
                else:
                    noise_pred_text = noise_pred_cond
                    if cfg_star_switch:
                        # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
                        positive_flat = noise_pred_text.view(batch_size, -1)  
                        negative_flat = noise_pred_uncond.view(batch_size, -1)  

                        alpha = optimized_scale(positive_flat,negative_flat)
                        alpha = alpha.view(batch_size, 1, 1, 1)

                        if (i <= cfg_zero_step):
                            noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
                        else:
                            noise_pred_uncond *= alpha
                    noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)            
            ret_values = noise_pred_uncond = noise_pred_cond = noise_pred_text = neg  = None
            
            if sample_solver == "euler":
                dt = timesteps[i] if i == len(timesteps)-1 else (timesteps[i] - timesteps[i + 1])
                dt = dt / self.num_timesteps
                latents = latents - noise_pred * dt[:, None, None, None, None]
            else:
                latents = sample_scheduler.step(
                    noise_pred[:, :, :target_shape[1]],
                    t,
                    latents,
                    **scheduler_kwargs)[0]

            if callback is not None:
                latents_preview = latents
                if vace and ref_images_count > 0: latents_preview = latents_preview[:, :, ref_images_count: ] 
                if trim_frames > 0:  latents_preview=  latents_preview[:, :,:-trim_frames]
                if image_outputs: latents_preview=  latents_preview[:, :,:1]
                if len(latents_preview) > 1: latents_preview = latents_preview.transpose(0,2)
                callback(i, latents_preview[0], False)
                latents_preview = None

        if vace and ref_images_count > 0: latents = latents[:, :, ref_images_count:]
        if trim_frames > 0:  latents=  latents[:, :,:-trim_frames]
        if return_latent_slice != None:
            latent_slice = latents[:, :, return_latent_slice].clone()

        x0 =latents.unbind(dim=0)

        if chipmunk:
            self.model.release_chipmunk() # need to add it at every exit when in prod

        videos = self.vae.decode(x0, VAE_tile_size)

        if image_outputs:
            videos = torch.cat([video[:,:1] for video in videos], dim=1) if len(videos) > 1 else videos[0][:,:1]
        else:
            videos = videos[0] # return only first video
        if color_correction_strength > 0 and prefix_frames_count > 0:
            if vace and False:
                # videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), input_frames[0].unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "progressive_blend").squeeze(0)
                videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), input_frames[0].unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "reference").squeeze(0)
                # videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), videos.unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "reference").squeeze(0)
            elif color_reference_frame is not None:
                videos = match_and_blend_colors(videos.unsqueeze(0), color_reference_frame.unsqueeze(0), color_correction_strength).squeeze(0)
            
        if return_latent_slice != None:
            return { "x" : videos, "latent_slice" : latent_slice }
        return videos

    def adapt_vace_model(self, model):
        modules_dict= { k: m for k, m in model.named_modules()}
        for model_layer, vace_layer in model.vace_layers_mapping.items():
            module = modules_dict[f"vace_blocks.{vace_layer}"]
            target = modules_dict[f"blocks.{model_layer}"]
            setattr(target, "vace", module )
        delattr(model, "vace_blocks")

def query_model_def(model_type, model_def):
    if "URLs2" in model_def:
        return { "no_steps_skipping":True}
    else:
        return None