File size: 7,784 Bytes
30f8a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
from .istftnet import AdainResBlk1d
from torch.nn.utils import weight_norm
from transformers import AlbertModel
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


class LinearNorm(nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(LinearNorm, self).__init__()
        self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias)
        nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)


class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps
        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)


class TextEncoder(nn.Module):
    def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
        super().__init__()
        self.embedding = nn.Embedding(n_symbols, channels)
        padding = (kernel_size - 1) // 2
        self.cnn = nn.ModuleList()
        for _ in range(depth):
            self.cnn.append(nn.Sequential(
                weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
                LayerNorm(channels),
                actv,
                nn.Dropout(0.2),
            ))
        self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)

    def forward(self, x, input_lengths, m):
        x = self.embedding(x)  # [B, T, emb]
        x = x.transpose(1, 2)  # [B, emb, T]
        m = m.unsqueeze(1)
        x.masked_fill_(m, 0.0)
        for c in self.cnn:
            x = c(x)
            x.masked_fill_(m, 0.0)
        x = x.transpose(1, 2)  # [B, T, chn]
        lengths = input_lengths if input_lengths.device == torch.device('cpu') else input_lengths.to('cpu')
        x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
        self.lstm.flatten_parameters()
        x, _ = self.lstm(x)
        x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
        x = x.transpose(-1, -2)
        x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device)
        x_pad[:, :, :x.shape[-1]] = x
        x = x_pad
        x.masked_fill_(m, 0.0)
        return x


class AdaLayerNorm(nn.Module):
    def __init__(self, style_dim, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps
        self.fc = nn.Linear(style_dim, channels*2)

    def forward(self, x, s):
        x = x.transpose(-1, -2)
        x = x.transpose(1, -1)
        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), eps=self.eps)
        x = (1 + gamma) * x + beta
        return x.transpose(1, -1).transpose(-1, -2)


class ProsodyPredictor(nn.Module):
    def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
        super().__init__()
        self.text_encoder = DurationEncoder(sty_dim=style_dim, d_model=d_hid,nlayers=nlayers, dropout=dropout)
        self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        self.duration_proj = LinearNorm(d_hid, max_dur)
        self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        self.F0 = nn.ModuleList()
        self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
        self.N = nn.ModuleList()
        self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
        self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
        self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)

    def forward(self, texts, style, text_lengths, alignment, m):
        d = self.text_encoder(texts, style, text_lengths, m)
        m = m.unsqueeze(1)
        lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu')
        x = nn.utils.rnn.pack_padded_sequence(d, lengths, batch_first=True, enforce_sorted=False)
        self.lstm.flatten_parameters()
        x, _ = self.lstm(x)
        x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
        x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]], device=x.device)
        x_pad[:, :x.shape[1], :] = x
        x = x_pad
        duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=False))
        en = (d.transpose(-1, -2) @ alignment)
        return duration.squeeze(-1), en

    def F0Ntrain(self, x, s):
        x, _ = self.shared(x.transpose(-1, -2))
        F0 = x.transpose(-1, -2)
        for block in self.F0:
            F0 = block(F0, s)
        F0 = self.F0_proj(F0)
        N = x.transpose(-1, -2)
        for block in self.N:
            N = block(N, s)
        N = self.N_proj(N)
        return F0.squeeze(1), N.squeeze(1)


class DurationEncoder(nn.Module):
    def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
        super().__init__()
        self.lstms = nn.ModuleList()
        for _ in range(nlayers):
            self.lstms.append(nn.LSTM(d_model + sty_dim, d_model // 2, num_layers=1, batch_first=True, bidirectional=True, dropout=dropout))
            self.lstms.append(AdaLayerNorm(sty_dim, d_model))
        self.dropout = dropout
        self.d_model = d_model
        self.sty_dim = sty_dim

    def forward(self, x, style, text_lengths, m):
        masks = m
        x = x.permute(2, 0, 1)
        s = style.expand(x.shape[0], x.shape[1], -1)
        x = torch.cat([x, s], axis=-1)
        x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
        x = x.transpose(0, 1)
        x = x.transpose(-1, -2)
        for block in self.lstms:
            if isinstance(block, AdaLayerNorm):
                x = block(x.transpose(-1, -2), style).transpose(-1, -2)
                x = torch.cat([x, s.permute(1, 2, 0)], axis=1)
                x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
            else:
                lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu')
                x = x.transpose(-1, -2)
                x = nn.utils.rnn.pack_padded_sequence(
                    x, lengths, batch_first=True, enforce_sorted=False)
                block.flatten_parameters()
                x, _ = block(x)
                x, _ = nn.utils.rnn.pad_packed_sequence(
                    x, batch_first=True)
                x = F.dropout(x, p=self.dropout, training=False)
                x = x.transpose(-1, -2)
                x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device)
                x_pad[:, :, :x.shape[-1]] = x
                x = x_pad

        return x.transpose(-1, -2)


# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
class CustomAlbert(AlbertModel):
    def forward(self, *args, **kwargs):
        outputs = super().forward(*args, **kwargs)
        return outputs.last_hidden_state