File size: 23,725 Bytes
30f8a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import binascii
import os
import os.path as osp
import torchvision.transforms.functional as TF
import torch.nn.functional as F
import cv2
import tempfile
import imageio
import torch
import decord
import torchvision
from PIL import Image
import numpy as np
from rembg import remove, new_session
import random
import ffmpeg
import os
import tempfile
import subprocess
import json

__all__ = ['cache_video', 'cache_image', 'str2bool']



from PIL import Image

def seed_everything(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    if torch.backends.mps.is_available():
        torch.mps.manual_seed(seed)

def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ):
    import math

    video_frame_duration = 1 /video_fps
    target_frame_duration = 1 / target_fps 
    
    target_time = start_target_frame * target_frame_duration
    frame_no = math.ceil(target_time / video_frame_duration)  
    cur_time = frame_no * video_frame_duration
    frame_ids =[]
    while True:
        if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count :
            break
        diff = round( (target_time -cur_time) / video_frame_duration , 5)
        add_frames_count = math.ceil( diff)
        frame_no += add_frames_count
        if frame_no >= video_frames_count:             
            break
        frame_ids.append(frame_no)
        cur_time += add_frames_count * video_frame_duration
        target_time += target_frame_duration
    frame_ids = frame_ids[:max_target_frames_count]
    return frame_ids

import os
from datetime import datetime

def get_file_creation_date(file_path):
    # On Windows
    if os.name == 'nt':
        return datetime.fromtimestamp(os.path.getctime(file_path))
    # On Unix/Linux/Mac (gets last status change, not creation)
    else:
        stat = os.stat(file_path)
    return datetime.fromtimestamp(stat.st_birthtime if hasattr(stat, 'st_birthtime') else stat.st_mtime)

def truncate_for_filesystem(s, max_bytes=255):
    if len(s.encode('utf-8')) <= max_bytes: return s
    l, r = 0, len(s)
    while l < r:
        m = (l + r + 1) // 2
        if len(s[:m].encode('utf-8')) <= max_bytes: l = m
        else: r = m - 1
    return s[:l]

def get_video_info(video_path):
    import cv2
    cap = cv2.VideoCapture(video_path)
    
    # Get FPS
    fps = round(cap.get(cv2.CAP_PROP_FPS))
    
    # Get resolution
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
    cap.release()
    
    return fps, width, height, frame_count

def get_video_frame(file_name, frame_no):
    decord.bridge.set_bridge('torch')
    reader = decord.VideoReader(file_name)

    frame = reader.get_batch([frame_no]).squeeze(0)
    img = Image.fromarray(frame.numpy().astype(np.uint8))
    return img

def convert_image_to_video(image):
    if image is None:
        return None
    
    # Convert PIL/numpy image to OpenCV format if needed
    if isinstance(image, np.ndarray):
        # Gradio images are typically RGB, OpenCV expects BGR
        img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    else:
        # Handle PIL Image
        img_array = np.array(image)
        img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
    
    height, width = img_bgr.shape[:2]
    
    # Create temporary video file (auto-cleaned by Gradio)
    with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(temp_video.name, fourcc, 30.0, (width, height))
        out.write(img_bgr)
        out.release()
        return temp_video.name
    
def resize_lanczos(img, h, w):
    img = (img + 1).float().mul_(127.5)
    img = Image.fromarray(np.clip(img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
    img = img.resize((w,h), resample=Image.Resampling.LANCZOS) 
    img = torch.from_numpy(np.array(img).astype(np.float32)).movedim(-1, 0)
    img = img.div(127.5).sub_(1)
    return img

def remove_background(img, session=None):
    if session ==None:
        session = new_session() 
    img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
    img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
    return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)

def convert_tensor_to_image(t, frame_no = -1):    
    t = t[:, frame_no] if frame_no >= 0 else t
    return Image.fromarray(t.clone().add_(1.).mul_(127.5).permute(1,2,0).to(torch.uint8).cpu().numpy())

def save_image(tensor_image, name, frame_no = -1):
    convert_tensor_to_image(tensor_image, frame_no).save(name)

def get_outpainting_full_area_dimensions(frame_height,frame_width, outpainting_dims):
    outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
    frame_height = int(frame_height * (100 + outpainting_top + outpainting_bottom) / 100)
    frame_width =  int(frame_width * (100 + outpainting_left + outpainting_right) / 100)
    return frame_height, frame_width  

def  get_outpainting_frame_location(final_height, final_width,  outpainting_dims, block_size = 8):
    outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
    raw_height = int(final_height / ((100 + outpainting_top + outpainting_bottom) / 100))
    height = int(raw_height / block_size) * block_size
    extra_height = raw_height - height
          
    raw_width = int(final_width / ((100 + outpainting_left + outpainting_right) / 100)) 
    width = int(raw_width / block_size) * block_size
    extra_width = raw_width - width  
    margin_top = int(outpainting_top/(100 + outpainting_top + outpainting_bottom) * final_height)
    if extra_height != 0 and (outpainting_top + outpainting_bottom) != 0:
        margin_top += int(outpainting_top / (outpainting_top + outpainting_bottom) * extra_height)
    if (margin_top + height) > final_height or outpainting_bottom == 0: margin_top = final_height - height
    margin_left = int(outpainting_left/(100 + outpainting_left + outpainting_right) * final_width)
    if extra_width != 0 and (outpainting_left + outpainting_right) != 0:
        margin_left += int(outpainting_left / (outpainting_left + outpainting_right) * extra_height)
    if (margin_left + width) > final_width or outpainting_right == 0: margin_left = final_width - width
    return height, width, margin_top, margin_left

def calculate_new_dimensions(canvas_height, canvas_width, height, width, fit_into_canvas, block_size = 16):
    if fit_into_canvas == None:
        return height, width
    if fit_into_canvas:
        scale1  = min(canvas_height / height, canvas_width / width)
        scale2  = min(canvas_width / height, canvas_height / width)
        scale = max(scale1, scale2) 
    else:
        scale = (canvas_height * canvas_width / (height * width))**(1/2)

    new_height = round( height * scale / block_size) * block_size
    new_width = round( width * scale / block_size) * block_size
    return new_height, new_width

def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, ignore_first, fit_into_canvas = False ):
    if rm_background:
        session = new_session() 

    output_list =[]
    for i, img in enumerate(img_list):
        width, height =  img.size 

        if fit_into_canvas:
            white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255 
            scale = min(budget_height / height, budget_width / width)
            new_height = int(height * scale)
            new_width = int(width * scale)
            resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) 
            top = (budget_height - new_height) // 2
            left = (budget_width - new_width) // 2
            white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image)            
            resized_image = Image.fromarray(white_canvas)  
        else:
            scale = (budget_height * budget_width / (height * width))**(1/2)
            new_height = int( round(height * scale / 16) * 16)
            new_width = int( round(width * scale / 16) * 16)
            resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) 
        if rm_background  and not (ignore_first and i == 0) :
            # resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
            resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
        output_list.append(resized_image) #alpha_matting_background_threshold = 30, alpha_foreground_background_threshold = 200,
    return output_list


def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name


def cache_video(tensor,
                save_file=None,
                fps=30,
                suffix='.mp4',
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    # cache file
    cache_file = osp.join('/tmp', rand_name(
        suffix=suffix)) if save_file is None else save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
            tensor = tensor.clamp(min(value_range), max(value_range))
            tensor = torch.stack([
                torchvision.utils.make_grid(
                    u, nrow=nrow, normalize=normalize, value_range=value_range)
                for u in tensor.unbind(2)
            ],
                                 dim=1).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(
                cache_file, fps=fps, codec='libx264', quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
        print(f'cache_video failed, error: {error}', flush=True)
        return None


def cache_image(tensor,
                save_file,
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    # cache file
    suffix = osp.splitext(save_file)[1]
    if suffix.lower() not in [
            '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
    ]:
        suffix = '.png'

    # save to cache
    error = None
    for _ in range(retry):
        try:
            tensor = tensor.clamp(min(value_range), max(value_range))
            torchvision.utils.save_image(
                tensor,
                save_file,
                nrow=nrow,
                normalize=normalize,
                value_range=value_range)
            return save_file
        except Exception as e:
            error = e
            continue


def str2bool(v):
    """
    Convert a string to a boolean.

    Supported true values: 'yes', 'true', 't', 'y', '1'
    Supported false values: 'no', 'false', 'f', 'n', '0'

    Args:
        v (str): String to convert.

    Returns:
        bool: Converted boolean value.

    Raises:
        argparse.ArgumentTypeError: If the value cannot be converted to boolean.
    """
    if isinstance(v, bool):
        return v
    v_lower = v.lower()
    if v_lower in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v_lower in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected (True/False)')


import sys, time

# Global variables to track download progress
_start_time = None
_last_time = None
_last_downloaded = 0
_speed_history = []
_update_interval = 0.5  # Update speed every 0.5 seconds

def progress_hook(block_num, block_size, total_size, filename=None):
    """
    Simple progress bar hook for urlretrieve
    
    Args:
        block_num: Number of blocks downloaded so far
        block_size: Size of each block in bytes
        total_size: Total size of the file in bytes
        filename: Name of the file being downloaded (optional)
    """
    global _start_time, _last_time, _last_downloaded, _speed_history, _update_interval
    
    current_time = time.time()
    downloaded = block_num * block_size
    
    # Initialize timing on first call
    if _start_time is None or block_num == 0:
        _start_time = current_time
        _last_time = current_time
        _last_downloaded = 0
        _speed_history = []
    
    # Calculate download speed only at specified intervals
    speed = 0
    if current_time - _last_time >= _update_interval:
        if _last_time > 0:
            current_speed = (downloaded - _last_downloaded) / (current_time - _last_time)
            _speed_history.append(current_speed)
            # Keep only last 5 speed measurements for smoothing
            if len(_speed_history) > 5:
                _speed_history.pop(0)
            # Average the recent speeds for smoother display
            speed = sum(_speed_history) / len(_speed_history)
        
        _last_time = current_time
        _last_downloaded = downloaded
    elif _speed_history:
        # Use the last calculated average speed
        speed = sum(_speed_history) / len(_speed_history)
    # Format file sizes and speed
    def format_bytes(bytes_val):
        for unit in ['B', 'KB', 'MB', 'GB']:
            if bytes_val < 1024:
                return f"{bytes_val:.1f}{unit}"
            bytes_val /= 1024
        return f"{bytes_val:.1f}TB"
    
    file_display = filename if filename else "Unknown file"
    
    if total_size <= 0:
        # If total size is unknown, show downloaded bytes
        speed_str = f" @ {format_bytes(speed)}/s" if speed > 0 else ""
        line = f"\r{file_display}: {format_bytes(downloaded)}{speed_str}"
        # Clear any trailing characters by padding with spaces
        sys.stdout.write(line.ljust(80))
        sys.stdout.flush()
        return
    
    downloaded = block_num * block_size
    percent = min(100, (downloaded / total_size) * 100)
    
    # Create progress bar (40 characters wide to leave room for other info)
    bar_length = 40
    filled = int(bar_length * percent / 100)
    bar = '█' * filled + '░' * (bar_length - filled)
    
    # Format file sizes and speed
    def format_bytes(bytes_val):
        for unit in ['B', 'KB', 'MB', 'GB']:
            if bytes_val < 1024:
                return f"{bytes_val:.1f}{unit}"
            bytes_val /= 1024
        return f"{bytes_val:.1f}TB"
    
    speed_str = f" @ {format_bytes(speed)}/s" if speed > 0 else ""
    
    # Display progress with filename first
    line = f"\r{file_display}: [{bar}] {percent:.1f}% ({format_bytes(downloaded)}/{format_bytes(total_size)}){speed_str}"
    # Clear any trailing characters by padding with spaces
    sys.stdout.write(line.ljust(100))
    sys.stdout.flush()
    
    # Print newline when complete
    if percent >= 100:
        print()

# Wrapper function to include filename in progress hook
def create_progress_hook(filename):
    """Creates a progress hook with the filename included"""
    global _start_time, _last_time, _last_downloaded, _speed_history
    # Reset timing variables for new download
    _start_time = None
    _last_time = None
    _last_downloaded = 0
    _speed_history = []
    
    def hook(block_num, block_size, total_size):
        return progress_hook(block_num, block_size, total_size, filename)
    return hook


import tempfile, os
import ffmpeg

def extract_audio_tracks(source_video, verbose=False, query_only=False):
    """
    Extract all audio tracks from a source video into temporary AAC files.

    Returns:
        Tuple:
          - List of temp file paths for extracted audio tracks
          - List of corresponding metadata dicts:
              {'codec', 'sample_rate', 'channels', 'duration', 'language'}
              where 'duration' is set to container duration (for consistency).
    """
    probe = ffmpeg.probe(source_video)
    audio_streams = [s for s in probe['streams'] if s['codec_type'] == 'audio']
    container_duration = float(probe['format'].get('duration', 0.0))

    if not audio_streams:
        if query_only: return 0
        if verbose: print(f"No audio track found in {source_video}")
        return [], []

    if query_only:
        return len(audio_streams)

    if verbose:
        print(f"Found {len(audio_streams)} audio track(s), container duration = {container_duration:.3f}s")

    file_paths = []
    metadata = []

    for i, stream in enumerate(audio_streams):
        fd, temp_path = tempfile.mkstemp(suffix=f'_track{i}.aac', prefix='audio_')
        os.close(fd)

        file_paths.append(temp_path)
        metadata.append({
            'codec': stream.get('codec_name'),
            'sample_rate': int(stream.get('sample_rate', 0)),
            'channels': int(stream.get('channels', 0)),
            'duration': container_duration,
            'language': stream.get('tags', {}).get('language', None)
        })

        ffmpeg.input(source_video).output(
            temp_path,
            **{f'map': f'0:a:{i}', 'acodec': 'aac', 'b:a': '128k'}
        ).overwrite_output().run(quiet=not verbose)

    return file_paths, metadata


import subprocess

import subprocess

def combine_and_concatenate_video_with_audio_tracks(
    save_path_tmp, video_path,
    source_audio_tracks, new_audio_tracks,
    source_audio_duration, audio_sampling_rate,
    new_audio_from_start=False,
    source_audio_metadata=None,
    audio_bitrate='128k',
    audio_codec='aac',
    verbose = False
):
    inputs, filters, maps, idx = ['-i', video_path], [], ['-map', '0:v'], 1
    metadata_args = []
    sources = source_audio_tracks or []
    news = new_audio_tracks or []

    duplicate_source = len(sources) == 1 and len(news) > 1
    N = len(news) if source_audio_duration == 0 else max(len(sources), len(news)) or 1

    for i in range(N):
        s = (sources[i] if i < len(sources)
             else sources[0] if duplicate_source else None)
        n = news[i] if len(news) == N else (news[0] if news else None)

        if source_audio_duration == 0:
            if n:
                inputs += ['-i', n]
                filters.append(f'[{idx}:a]apad=pad_dur=100[aout{i}]')
                idx += 1
            else:
                filters.append(f'anullsrc=r={audio_sampling_rate}:cl=mono,apad=pad_dur=100[aout{i}]')
        else:
            if s:
                inputs += ['-i', s]
                meta = source_audio_metadata[i] if source_audio_metadata and i < len(source_audio_metadata) else {}
                needs_filter = (
                    meta.get('codec') != audio_codec or
                    meta.get('sample_rate') != audio_sampling_rate or
                    meta.get('channels') != 1 or
                    meta.get('duration', 0) < source_audio_duration
                )
                if needs_filter:
                    filters.append(
                        f'[{idx}:a]aresample={audio_sampling_rate},aformat=channel_layouts=mono,'
                        f'apad=pad_dur={source_audio_duration},atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
                else:
                    filters.append(
                        f'[{idx}:a]apad=pad_dur={source_audio_duration},atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
                if lang := meta.get('language'):
                    metadata_args += ['-metadata:s:a:' + str(i), f'language={lang}']
                idx += 1
            else:
                filters.append(
                    f'anullsrc=r={audio_sampling_rate}:cl=mono,atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')

            if n:
                inputs += ['-i', n]
                start = '0' if new_audio_from_start else source_audio_duration
                filters.append(
                    f'[{idx}:a]aresample={audio_sampling_rate},aformat=channel_layouts=mono,'
                    f'atrim=start={start},asetpts=PTS-STARTPTS[n{i}]')
                filters.append(f'[s{i}][n{i}]concat=n=2:v=0:a=1[aout{i}]')
                idx += 1
            else:
                filters.append(f'[s{i}]apad=pad_dur=100[aout{i}]')

        maps += ['-map', f'[aout{i}]']

    cmd = ['ffmpeg', '-y', *inputs,
           '-filter_complex', ';'.join(filters),  # ✅ Only change made
           *maps, *metadata_args,
           '-c:v', 'copy',
           '-c:a', audio_codec,
           '-b:a', audio_bitrate,
           '-ar', str(audio_sampling_rate),
           '-ac', '1',
           '-shortest', save_path_tmp]

    if verbose:
        print(f"ffmpeg command: {cmd}")
    try:
        subprocess.run(cmd, check=True, capture_output=True, text=True)
    except subprocess.CalledProcessError as e:
        raise Exception(f"FFmpeg error: {e.stderr}")


import ffmpeg


import subprocess
import ffmpeg

def combine_video_with_audio_tracks(target_video, audio_tracks, output_video,
                                     audio_metadata=None, verbose=False):
    if not audio_tracks:
        if verbose: print("No audio tracks to combine."); return False

    dur = float(next(s for s in ffmpeg.probe(target_video)['streams']
                     if s['codec_type'] == 'video')['duration'])
    if verbose: print(f"Video duration: {dur:.3f}s")

    cmd = ['ffmpeg', '-y', '-i', target_video]
    for path in audio_tracks:
        cmd += ['-i', path]

    cmd += ['-map', '0:v']
    for i in range(len(audio_tracks)):
        cmd += ['-map', f'{i+1}:a']

    for i, meta in enumerate(audio_metadata or []):
        if (lang := meta.get('language')):
            cmd += ['-metadata:s:a:' + str(i), f'language={lang}']

    cmd += ['-c:v', 'copy', '-c:a', 'copy', '-t', str(dur), output_video]

    result = subprocess.run(cmd, capture_output=not verbose, text=True)
    if result.returncode != 0:
        raise Exception(f"FFmpeg error:\n{result.stderr}")
    if verbose:
        print(f"Created {output_video} with {len(audio_tracks)} audio track(s)")
    return True


def cleanup_temp_audio_files(audio_tracks, verbose=False):
    """
    Clean up temporary audio files.
    
    Args:
        audio_tracks: List of audio file paths to delete
        verbose: Enable verbose output (default: False)
        
    Returns:
        Number of files successfully deleted
    """
    deleted_count = 0
    
    for audio_path in audio_tracks:
        try:
            if os.path.exists(audio_path):
                os.unlink(audio_path)
                deleted_count += 1
                if verbose:
                    print(f"Cleaned up {audio_path}")
        except PermissionError:
            print(f"Warning: Could not delete {audio_path} (file may be in use)")
        except Exception as e:
            print(f"Warning: Error deleting {audio_path}: {e}")
    
    if verbose and deleted_count > 0:
        print(f"Successfully deleted {deleted_count} temporary audio file(s)")
    
    return deleted_count