Spaces:
Paused
Paused
File size: 23,725 Bytes
30f8a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import binascii
import os
import os.path as osp
import torchvision.transforms.functional as TF
import torch.nn.functional as F
import cv2
import tempfile
import imageio
import torch
import decord
import torchvision
from PIL import Image
import numpy as np
from rembg import remove, new_session
import random
import ffmpeg
import os
import tempfile
import subprocess
import json
__all__ = ['cache_video', 'cache_image', 'str2bool']
from PIL import Image
def seed_everything(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ):
import math
video_frame_duration = 1 /video_fps
target_frame_duration = 1 / target_fps
target_time = start_target_frame * target_frame_duration
frame_no = math.ceil(target_time / video_frame_duration)
cur_time = frame_no * video_frame_duration
frame_ids =[]
while True:
if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count :
break
diff = round( (target_time -cur_time) / video_frame_duration , 5)
add_frames_count = math.ceil( diff)
frame_no += add_frames_count
if frame_no >= video_frames_count:
break
frame_ids.append(frame_no)
cur_time += add_frames_count * video_frame_duration
target_time += target_frame_duration
frame_ids = frame_ids[:max_target_frames_count]
return frame_ids
import os
from datetime import datetime
def get_file_creation_date(file_path):
# On Windows
if os.name == 'nt':
return datetime.fromtimestamp(os.path.getctime(file_path))
# On Unix/Linux/Mac (gets last status change, not creation)
else:
stat = os.stat(file_path)
return datetime.fromtimestamp(stat.st_birthtime if hasattr(stat, 'st_birthtime') else stat.st_mtime)
def truncate_for_filesystem(s, max_bytes=255):
if len(s.encode('utf-8')) <= max_bytes: return s
l, r = 0, len(s)
while l < r:
m = (l + r + 1) // 2
if len(s[:m].encode('utf-8')) <= max_bytes: l = m
else: r = m - 1
return s[:l]
def get_video_info(video_path):
import cv2
cap = cv2.VideoCapture(video_path)
# Get FPS
fps = round(cap.get(cv2.CAP_PROP_FPS))
# Get resolution
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return fps, width, height, frame_count
def get_video_frame(file_name, frame_no):
decord.bridge.set_bridge('torch')
reader = decord.VideoReader(file_name)
frame = reader.get_batch([frame_no]).squeeze(0)
img = Image.fromarray(frame.numpy().astype(np.uint8))
return img
def convert_image_to_video(image):
if image is None:
return None
# Convert PIL/numpy image to OpenCV format if needed
if isinstance(image, np.ndarray):
# Gradio images are typically RGB, OpenCV expects BGR
img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
else:
# Handle PIL Image
img_array = np.array(image)
img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
height, width = img_bgr.shape[:2]
# Create temporary video file (auto-cleaned by Gradio)
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_video.name, fourcc, 30.0, (width, height))
out.write(img_bgr)
out.release()
return temp_video.name
def resize_lanczos(img, h, w):
img = (img + 1).float().mul_(127.5)
img = Image.fromarray(np.clip(img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
img = img.resize((w,h), resample=Image.Resampling.LANCZOS)
img = torch.from_numpy(np.array(img).astype(np.float32)).movedim(-1, 0)
img = img.div(127.5).sub_(1)
return img
def remove_background(img, session=None):
if session ==None:
session = new_session()
img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)
def convert_tensor_to_image(t, frame_no = -1):
t = t[:, frame_no] if frame_no >= 0 else t
return Image.fromarray(t.clone().add_(1.).mul_(127.5).permute(1,2,0).to(torch.uint8).cpu().numpy())
def save_image(tensor_image, name, frame_no = -1):
convert_tensor_to_image(tensor_image, frame_no).save(name)
def get_outpainting_full_area_dimensions(frame_height,frame_width, outpainting_dims):
outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
frame_height = int(frame_height * (100 + outpainting_top + outpainting_bottom) / 100)
frame_width = int(frame_width * (100 + outpainting_left + outpainting_right) / 100)
return frame_height, frame_width
def get_outpainting_frame_location(final_height, final_width, outpainting_dims, block_size = 8):
outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
raw_height = int(final_height / ((100 + outpainting_top + outpainting_bottom) / 100))
height = int(raw_height / block_size) * block_size
extra_height = raw_height - height
raw_width = int(final_width / ((100 + outpainting_left + outpainting_right) / 100))
width = int(raw_width / block_size) * block_size
extra_width = raw_width - width
margin_top = int(outpainting_top/(100 + outpainting_top + outpainting_bottom) * final_height)
if extra_height != 0 and (outpainting_top + outpainting_bottom) != 0:
margin_top += int(outpainting_top / (outpainting_top + outpainting_bottom) * extra_height)
if (margin_top + height) > final_height or outpainting_bottom == 0: margin_top = final_height - height
margin_left = int(outpainting_left/(100 + outpainting_left + outpainting_right) * final_width)
if extra_width != 0 and (outpainting_left + outpainting_right) != 0:
margin_left += int(outpainting_left / (outpainting_left + outpainting_right) * extra_height)
if (margin_left + width) > final_width or outpainting_right == 0: margin_left = final_width - width
return height, width, margin_top, margin_left
def calculate_new_dimensions(canvas_height, canvas_width, height, width, fit_into_canvas, block_size = 16):
if fit_into_canvas == None:
return height, width
if fit_into_canvas:
scale1 = min(canvas_height / height, canvas_width / width)
scale2 = min(canvas_width / height, canvas_height / width)
scale = max(scale1, scale2)
else:
scale = (canvas_height * canvas_width / (height * width))**(1/2)
new_height = round( height * scale / block_size) * block_size
new_width = round( width * scale / block_size) * block_size
return new_height, new_width
def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, ignore_first, fit_into_canvas = False ):
if rm_background:
session = new_session()
output_list =[]
for i, img in enumerate(img_list):
width, height = img.size
if fit_into_canvas:
white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255
scale = min(budget_height / height, budget_width / width)
new_height = int(height * scale)
new_width = int(width * scale)
resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS)
top = (budget_height - new_height) // 2
left = (budget_width - new_width) // 2
white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image)
resized_image = Image.fromarray(white_canvas)
else:
scale = (budget_height * budget_width / (height * width))**(1/2)
new_height = int( round(height * scale / 16) * 16)
new_width = int( round(width * scale / 16) * 16)
resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS)
if rm_background and not (ignore_first and i == 0) :
# resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
output_list.append(resized_image) #alpha_matting_background_threshold = 30, alpha_foreground_background_threshold = 200,
return output_list
def rand_name(length=8, suffix=''):
name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
if suffix:
if not suffix.startswith('.'):
suffix = '.' + suffix
name += suffix
return name
def cache_video(tensor,
save_file=None,
fps=30,
suffix='.mp4',
nrow=8,
normalize=True,
value_range=(-1, 1),
retry=5):
# cache file
cache_file = osp.join('/tmp', rand_name(
suffix=suffix)) if save_file is None else save_file
# save to cache
error = None
for _ in range(retry):
try:
# preprocess
tensor = tensor.clamp(min(value_range), max(value_range))
tensor = torch.stack([
torchvision.utils.make_grid(
u, nrow=nrow, normalize=normalize, value_range=value_range)
for u in tensor.unbind(2)
],
dim=1).permute(1, 2, 3, 0)
tensor = (tensor * 255).type(torch.uint8).cpu()
# write video
writer = imageio.get_writer(
cache_file, fps=fps, codec='libx264', quality=8)
for frame in tensor.numpy():
writer.append_data(frame)
writer.close()
return cache_file
except Exception as e:
error = e
continue
else:
print(f'cache_video failed, error: {error}', flush=True)
return None
def cache_image(tensor,
save_file,
nrow=8,
normalize=True,
value_range=(-1, 1),
retry=5):
# cache file
suffix = osp.splitext(save_file)[1]
if suffix.lower() not in [
'.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
]:
suffix = '.png'
# save to cache
error = None
for _ in range(retry):
try:
tensor = tensor.clamp(min(value_range), max(value_range))
torchvision.utils.save_image(
tensor,
save_file,
nrow=nrow,
normalize=normalize,
value_range=value_range)
return save_file
except Exception as e:
error = e
continue
def str2bool(v):
"""
Convert a string to a boolean.
Supported true values: 'yes', 'true', 't', 'y', '1'
Supported false values: 'no', 'false', 'f', 'n', '0'
Args:
v (str): String to convert.
Returns:
bool: Converted boolean value.
Raises:
argparse.ArgumentTypeError: If the value cannot be converted to boolean.
"""
if isinstance(v, bool):
return v
v_lower = v.lower()
if v_lower in ('yes', 'true', 't', 'y', '1'):
return True
elif v_lower in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected (True/False)')
import sys, time
# Global variables to track download progress
_start_time = None
_last_time = None
_last_downloaded = 0
_speed_history = []
_update_interval = 0.5 # Update speed every 0.5 seconds
def progress_hook(block_num, block_size, total_size, filename=None):
"""
Simple progress bar hook for urlretrieve
Args:
block_num: Number of blocks downloaded so far
block_size: Size of each block in bytes
total_size: Total size of the file in bytes
filename: Name of the file being downloaded (optional)
"""
global _start_time, _last_time, _last_downloaded, _speed_history, _update_interval
current_time = time.time()
downloaded = block_num * block_size
# Initialize timing on first call
if _start_time is None or block_num == 0:
_start_time = current_time
_last_time = current_time
_last_downloaded = 0
_speed_history = []
# Calculate download speed only at specified intervals
speed = 0
if current_time - _last_time >= _update_interval:
if _last_time > 0:
current_speed = (downloaded - _last_downloaded) / (current_time - _last_time)
_speed_history.append(current_speed)
# Keep only last 5 speed measurements for smoothing
if len(_speed_history) > 5:
_speed_history.pop(0)
# Average the recent speeds for smoother display
speed = sum(_speed_history) / len(_speed_history)
_last_time = current_time
_last_downloaded = downloaded
elif _speed_history:
# Use the last calculated average speed
speed = sum(_speed_history) / len(_speed_history)
# Format file sizes and speed
def format_bytes(bytes_val):
for unit in ['B', 'KB', 'MB', 'GB']:
if bytes_val < 1024:
return f"{bytes_val:.1f}{unit}"
bytes_val /= 1024
return f"{bytes_val:.1f}TB"
file_display = filename if filename else "Unknown file"
if total_size <= 0:
# If total size is unknown, show downloaded bytes
speed_str = f" @ {format_bytes(speed)}/s" if speed > 0 else ""
line = f"\r{file_display}: {format_bytes(downloaded)}{speed_str}"
# Clear any trailing characters by padding with spaces
sys.stdout.write(line.ljust(80))
sys.stdout.flush()
return
downloaded = block_num * block_size
percent = min(100, (downloaded / total_size) * 100)
# Create progress bar (40 characters wide to leave room for other info)
bar_length = 40
filled = int(bar_length * percent / 100)
bar = '█' * filled + '░' * (bar_length - filled)
# Format file sizes and speed
def format_bytes(bytes_val):
for unit in ['B', 'KB', 'MB', 'GB']:
if bytes_val < 1024:
return f"{bytes_val:.1f}{unit}"
bytes_val /= 1024
return f"{bytes_val:.1f}TB"
speed_str = f" @ {format_bytes(speed)}/s" if speed > 0 else ""
# Display progress with filename first
line = f"\r{file_display}: [{bar}] {percent:.1f}% ({format_bytes(downloaded)}/{format_bytes(total_size)}){speed_str}"
# Clear any trailing characters by padding with spaces
sys.stdout.write(line.ljust(100))
sys.stdout.flush()
# Print newline when complete
if percent >= 100:
print()
# Wrapper function to include filename in progress hook
def create_progress_hook(filename):
"""Creates a progress hook with the filename included"""
global _start_time, _last_time, _last_downloaded, _speed_history
# Reset timing variables for new download
_start_time = None
_last_time = None
_last_downloaded = 0
_speed_history = []
def hook(block_num, block_size, total_size):
return progress_hook(block_num, block_size, total_size, filename)
return hook
import tempfile, os
import ffmpeg
def extract_audio_tracks(source_video, verbose=False, query_only=False):
"""
Extract all audio tracks from a source video into temporary AAC files.
Returns:
Tuple:
- List of temp file paths for extracted audio tracks
- List of corresponding metadata dicts:
{'codec', 'sample_rate', 'channels', 'duration', 'language'}
where 'duration' is set to container duration (for consistency).
"""
probe = ffmpeg.probe(source_video)
audio_streams = [s for s in probe['streams'] if s['codec_type'] == 'audio']
container_duration = float(probe['format'].get('duration', 0.0))
if not audio_streams:
if query_only: return 0
if verbose: print(f"No audio track found in {source_video}")
return [], []
if query_only:
return len(audio_streams)
if verbose:
print(f"Found {len(audio_streams)} audio track(s), container duration = {container_duration:.3f}s")
file_paths = []
metadata = []
for i, stream in enumerate(audio_streams):
fd, temp_path = tempfile.mkstemp(suffix=f'_track{i}.aac', prefix='audio_')
os.close(fd)
file_paths.append(temp_path)
metadata.append({
'codec': stream.get('codec_name'),
'sample_rate': int(stream.get('sample_rate', 0)),
'channels': int(stream.get('channels', 0)),
'duration': container_duration,
'language': stream.get('tags', {}).get('language', None)
})
ffmpeg.input(source_video).output(
temp_path,
**{f'map': f'0:a:{i}', 'acodec': 'aac', 'b:a': '128k'}
).overwrite_output().run(quiet=not verbose)
return file_paths, metadata
import subprocess
import subprocess
def combine_and_concatenate_video_with_audio_tracks(
save_path_tmp, video_path,
source_audio_tracks, new_audio_tracks,
source_audio_duration, audio_sampling_rate,
new_audio_from_start=False,
source_audio_metadata=None,
audio_bitrate='128k',
audio_codec='aac',
verbose = False
):
inputs, filters, maps, idx = ['-i', video_path], [], ['-map', '0:v'], 1
metadata_args = []
sources = source_audio_tracks or []
news = new_audio_tracks or []
duplicate_source = len(sources) == 1 and len(news) > 1
N = len(news) if source_audio_duration == 0 else max(len(sources), len(news)) or 1
for i in range(N):
s = (sources[i] if i < len(sources)
else sources[0] if duplicate_source else None)
n = news[i] if len(news) == N else (news[0] if news else None)
if source_audio_duration == 0:
if n:
inputs += ['-i', n]
filters.append(f'[{idx}:a]apad=pad_dur=100[aout{i}]')
idx += 1
else:
filters.append(f'anullsrc=r={audio_sampling_rate}:cl=mono,apad=pad_dur=100[aout{i}]')
else:
if s:
inputs += ['-i', s]
meta = source_audio_metadata[i] if source_audio_metadata and i < len(source_audio_metadata) else {}
needs_filter = (
meta.get('codec') != audio_codec or
meta.get('sample_rate') != audio_sampling_rate or
meta.get('channels') != 1 or
meta.get('duration', 0) < source_audio_duration
)
if needs_filter:
filters.append(
f'[{idx}:a]aresample={audio_sampling_rate},aformat=channel_layouts=mono,'
f'apad=pad_dur={source_audio_duration},atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
else:
filters.append(
f'[{idx}:a]apad=pad_dur={source_audio_duration},atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
if lang := meta.get('language'):
metadata_args += ['-metadata:s:a:' + str(i), f'language={lang}']
idx += 1
else:
filters.append(
f'anullsrc=r={audio_sampling_rate}:cl=mono,atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
if n:
inputs += ['-i', n]
start = '0' if new_audio_from_start else source_audio_duration
filters.append(
f'[{idx}:a]aresample={audio_sampling_rate},aformat=channel_layouts=mono,'
f'atrim=start={start},asetpts=PTS-STARTPTS[n{i}]')
filters.append(f'[s{i}][n{i}]concat=n=2:v=0:a=1[aout{i}]')
idx += 1
else:
filters.append(f'[s{i}]apad=pad_dur=100[aout{i}]')
maps += ['-map', f'[aout{i}]']
cmd = ['ffmpeg', '-y', *inputs,
'-filter_complex', ';'.join(filters), # ✅ Only change made
*maps, *metadata_args,
'-c:v', 'copy',
'-c:a', audio_codec,
'-b:a', audio_bitrate,
'-ar', str(audio_sampling_rate),
'-ac', '1',
'-shortest', save_path_tmp]
if verbose:
print(f"ffmpeg command: {cmd}")
try:
subprocess.run(cmd, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
raise Exception(f"FFmpeg error: {e.stderr}")
import ffmpeg
import subprocess
import ffmpeg
def combine_video_with_audio_tracks(target_video, audio_tracks, output_video,
audio_metadata=None, verbose=False):
if not audio_tracks:
if verbose: print("No audio tracks to combine."); return False
dur = float(next(s for s in ffmpeg.probe(target_video)['streams']
if s['codec_type'] == 'video')['duration'])
if verbose: print(f"Video duration: {dur:.3f}s")
cmd = ['ffmpeg', '-y', '-i', target_video]
for path in audio_tracks:
cmd += ['-i', path]
cmd += ['-map', '0:v']
for i in range(len(audio_tracks)):
cmd += ['-map', f'{i+1}:a']
for i, meta in enumerate(audio_metadata or []):
if (lang := meta.get('language')):
cmd += ['-metadata:s:a:' + str(i), f'language={lang}']
cmd += ['-c:v', 'copy', '-c:a', 'copy', '-t', str(dur), output_video]
result = subprocess.run(cmd, capture_output=not verbose, text=True)
if result.returncode != 0:
raise Exception(f"FFmpeg error:\n{result.stderr}")
if verbose:
print(f"Created {output_video} with {len(audio_tracks)} audio track(s)")
return True
def cleanup_temp_audio_files(audio_tracks, verbose=False):
"""
Clean up temporary audio files.
Args:
audio_tracks: List of audio file paths to delete
verbose: Enable verbose output (default: False)
Returns:
Number of files successfully deleted
"""
deleted_count = 0
for audio_path in audio_tracks:
try:
if os.path.exists(audio_path):
os.unlink(audio_path)
deleted_count += 1
if verbose:
print(f"Cleaned up {audio_path}")
except PermissionError:
print(f"Warning: Could not delete {audio_path} (file may be in use)")
except Exception as e:
print(f"Warning: Error deleting {audio_path}: {e}")
if verbose and deleted_count > 0:
print(f"Successfully deleted {deleted_count} temporary audio file(s)")
return deleted_count
|