WANGP1 / flux /model.py
rahul7star's picture
Migrated from GitHub
30f8a30 verified
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
from flux.modules.lora import LinearLora, replace_linear_with_lora
@dataclass
class FluxParams:
in_channels: int
out_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def preprocess_loras(self, model_type, sd):
new_sd = {}
if len(sd) == 0: return sd
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
first_key= next(iter(sd))
if first_key.startswith("lora_unet_"):
new_sd = {}
print("Converting Lora Safetensors format to Lora Diffusers format")
repl_list = ["linear1", "linear2", "modulation", "img_attn", "txt_attn", "img_mlp", "txt_mlp", "img_mod", "txt_mod"]
src_list = ["_" + k + "." for k in repl_list]
src_list2 = ["_" + k + "_" for k in repl_list]
tgt_list = ["." + k + "." for k in repl_list]
for k,v in sd.items():
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
k = k.replace("lora_unet__blocks_","diffusion_model.blocks.")
k = k.replace("lora_unet_single_blocks_","diffusion_model.single_blocks.")
k = k.replace("lora_unet_double_blocks_","diffusion_model.double_blocks.")
for s,s2, t in zip(src_list, src_list2, tgt_list):
k = k.replace(s,t)
k = k.replace(s2,t)
k = k.replace("lora_up","lora_B")
k = k.replace("lora_down","lora_A")
new_sd[k] = v
elif first_key.startswith("transformer."):
root_src = ["time_text_embed.timestep_embedder.linear_1", "time_text_embed.timestep_embedder.linear_2", "time_text_embed.text_embedder.linear_1", "time_text_embed.text_embedder.linear_2",
"time_text_embed.guidance_embedder.linear_1", "time_text_embed.guidance_embedder.linear_2",
"x_embedder", "context_embedder", "proj_out" ]
root_tgt = ["time_in.in_layer", "time_in.out_layer", "vector_in.in_layer", "vector_in.out_layer",
"guidance_in.in_layer", "guidance_in.out_layer",
"img_in", "txt_in", "final_layer.linear" ]
double_src = ["norm1.linear", "norm1_context.linear", "attn.norm_q", "attn.norm_k", "ff.net.0.proj", "ff.net.2", "ff_context.net.0.proj", "ff_context.net.2", "attn.to_out.0" ,"attn.to_add_out", "attn.to_out", ".attn.to_", ".attn.add_q_proj.", ".attn.add_k_proj.", ".attn.add_v_proj.", ]
double_tgt = ["img_mod.lin", "txt_mod.lin", "img_attn.norm.query_norm", "img_attn.norm.key_norm", "img_mlp.0", "img_mlp.2", "txt_mlp.0", "txt_mlp.2", "img_attn.proj", "txt_attn.proj", "img_attn.proj", ".img_attn.", ".txt_attn.q.", ".txt_attn.k.", ".txt_attn.v."]
single_src = ["norm.linear", "attn.norm_q", "attn.norm_k", "proj_out",".attn.to_q.", ".attn.to_k.", ".attn.to_v.", ".proj_mlp."]
single_tgt = ["modulation.lin","norm.query_norm", "norm.key_norm", "linear2", ".linear1_attn_q.", ".linear1_attn_k.", ".linear1_attn_v.", ".linear1_mlp."]
for k,v in sd.items():
if k.startswith("transformer.single_transformer_blocks"):
k = k.replace("transformer.single_transformer_blocks", "diffusion_model.single_blocks")
for src, tgt in zip(single_src, single_tgt):
k = k.replace(src, tgt)
elif k.startswith("transformer.transformer_blocks"):
k = k.replace("transformer.transformer_blocks", "diffusion_model.double_blocks")
for src, tgt in zip(double_src, double_tgt):
k = k.replace(src, tgt)
else:
k = k.replace("transformer.", "diffusion_model.")
for src, tgt in zip(root_src, root_tgt):
k = k.replace(src, tgt)
if "norm_out.linear" in k:
if "lora_B" in k:
v = swap_scale_shift(v)
k = k.replace("norm_out.linear", "final_layer.adaLN_modulation.1")
new_sd[k] = v
return new_sd
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
callback= None,
pipeline =None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec += self.guidance_in(timestep_embedding(guidance, 256))
vec += self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
if callback != None:
callback(-1, None, False, True)
if pipeline._interrupt:
return None
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
class FluxLoraWrapper(Flux):
def __init__(
self,
lora_rank: int = 128,
lora_scale: float = 1.0,
*args,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.lora_rank = lora_rank
replace_linear_with_lora(
self,
max_rank=lora_rank,
scale=lora_scale,
)
def set_lora_scale(self, scale: float) -> None:
for module in self.modules():
if isinstance(module, LinearLora):
module.set_scale(scale=scale)