Wan22-Light / app.py
rahul7star's picture
Update app.py
9fe0c69 verified
raw
history blame
4.57 kB
import spaces
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
import imageio
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import os
import re
import json
import random
import tempfile
import traceback
from functools import partial
import numpy as np
from PIL import Image
import random
import numpy as np
import random
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
T2V_FIXED_FPS = 16
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
# Checkpoint ID
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
# Configure quantization (bitsandbytes 4-bit)
quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16
},
components_to_quantize=["transformer", "text_encoder"]
)
# Load pipeline with quantization
pipe = DiffusionPipeline.from_pretrained(
ckpt_id,
quantization_config=quant_config,
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
torch._dynamo.config.recompile_limit = 1000
torch._dynamo.config.capture_dynamic_output_shape_ops = True
# Smart duration function using all UI params
def get_duration(prompt, height, width, negative_prompt, duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
# Calculate dynamic duration based on steps and requested duration
if duration_seconds <= 2.5:
return steps * 18
else:
return steps * 25
# Gradio inference function with spaces GPU decorator
@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width, negative_prompt, duration_seconds,
guidance_scale, steps, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)):
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)),
MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
output_frames_list = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=int(height),
width=int(width),
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
filename = f"t2v_aaa.mp4"
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, filename)
export_to_video(output_frames_list, video_path, fps=T2V_FIXED_FPS)
print(f"✅ Video saved to: {video_path}")
download_label = f"📥 Download: {filename}"
return video_path, current_seed, gr.File(value=video_path, visible=True, label=download_label)
# Build Gradio UI with all parameters
with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo:
gr.Markdown("## 🚀 Wan2.1 T2V - Text to Video Generator (Quantized, Smart Duration)")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", lines=3, value="A futuristic cityscape with flying cars and neon lights.")
negative_prompt_input = gr.Textbox(label="Negative Prompt", lines=3, value="")
height_input = gr.Slider(256, 1024, step=8, value=512, label="Height")
width_input = gr.Slider(256, 1024, step=8, value=512, label="Width")
duration_input = gr.Slider(1, 10, value=2, step=0.1, label="Duration (seconds)")
steps_input = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
guidance_scale_input = gr.Slider(0.0, 20.0, step=0.5, value=7.5, label="Guidance Scale")
seed_input = gr.Number(value=42, label="Seed (optional)")
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
run_btn = gr.Button("Generate Video")
with gr.Column():
output_video = gr.Video(label="Generated Video")
ui_inputs = [prompt_input, height_input, width_input, negative_prompt_input, duration_input, guidance_scale_input, steps_input, seed_input, randomize_seed_checkbox]
run_btn.click(fn=generate_video, inputs=ui_inputs, outputs=output_video)
# Launch demo
demo.launch()