Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
5 |
from diffusers.quantizers import PipelineQuantizationConfig
|
6 |
import imageio
|
7 |
-
|
|
|
8 |
|
9 |
# Checkpoint ID
|
10 |
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
@@ -33,9 +33,20 @@ torch._dynamo.config.recompile_limit = 1000
|
|
33 |
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
34 |
|
35 |
# Duration function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
|
|
39 |
generator = torch.manual_seed(seed) if seed else None
|
40 |
fps = 8
|
41 |
num_frames = duration_seconds * fps if duration_seconds else 16
|
@@ -48,8 +59,14 @@ def generate_video(prompt, seed, steps, duration_seconds,progress=gr.Progress(tr
|
|
48 |
num_inference_steps=steps
|
49 |
).frames[0]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
out_path = "output.gif"
|
52 |
-
imageio.mimsave(out_path,
|
53 |
return out_path
|
54 |
|
55 |
# Build Gradio UI
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline
|
4 |
from diffusers.quantizers import PipelineQuantizationConfig
|
5 |
import imageio
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
|
9 |
# Checkpoint ID
|
10 |
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
|
|
33 |
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
34 |
|
35 |
# Duration function
|
36 |
+
def get_duration(prompt, height, width,
|
37 |
+
negative_prompt, duration_seconds,
|
38 |
+
guidance_scale, steps,
|
39 |
+
seed, randomize_seed):
|
40 |
+
if steps > 4 and duration_seconds > 2:
|
41 |
+
return 90
|
42 |
+
elif steps > 4 or duration_seconds > 2:
|
43 |
+
return 75
|
44 |
+
else:
|
45 |
+
return 60
|
46 |
|
47 |
+
# Gradio inference function with spaces GPU decorator
|
48 |
+
@spaces.GPU(duration=90)
|
49 |
+
def generate_video(prompt, seed, steps, duration_seconds):
|
50 |
generator = torch.manual_seed(seed) if seed else None
|
51 |
fps = 8
|
52 |
num_frames = duration_seconds * fps if duration_seconds else 16
|
|
|
59 |
num_inference_steps=steps
|
60 |
).frames[0]
|
61 |
|
62 |
+
# Ensure frames are uint8 numpy arrays for imageio
|
63 |
+
processed_frames = [
|
64 |
+
(np.clip(frame * 255, 0, 255).astype(np.uint8) if frame.dtype in [np.float32, np.float64] else frame)
|
65 |
+
for frame in video_frames
|
66 |
+
]
|
67 |
+
|
68 |
out_path = "output.gif"
|
69 |
+
imageio.mimsave(out_path, processed_frames, fps=fps)
|
70 |
return out_path
|
71 |
|
72 |
# Build Gradio UI
|