Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
|
2 |
-
import spaces
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from diffusers.quantizers import PipelineQuantizationConfig
|
|
|
8 |
|
9 |
# Checkpoint ID
|
10 |
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
@@ -27,45 +26,61 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
27 |
torch_dtype=torch.bfloat16
|
28 |
).to("cuda")
|
29 |
|
30 |
-
# Optimize memory
|
31 |
pipe.enable_model_cpu_offload()
|
32 |
torch._dynamo.config.recompile_limit = 1000
|
33 |
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
34 |
pipe.transformer.compile()
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
generator = torch.manual_seed(seed) if seed else None
|
40 |
|
41 |
-
# Force
|
42 |
-
num_frames = 16
|
43 |
fps = 8
|
|
|
44 |
|
45 |
video_frames = pipe(
|
46 |
prompt=prompt,
|
47 |
num_frames=num_frames,
|
48 |
-
generator=generator
|
|
|
49 |
).frames[0] # Take first video
|
50 |
|
51 |
# Save as GIF for Gradio preview
|
52 |
-
import imageio
|
53 |
out_path = "output.gif"
|
54 |
imageio.mimsave(out_path, video_frames, fps=fps)
|
55 |
return out_path
|
56 |
|
57 |
# Build Gradio UI
|
58 |
with gr.Blocks() as demo:
|
59 |
-
gr.Markdown("## 🚀 Wan2.1 T2V - Text to Video Generator (
|
60 |
with gr.Row():
|
61 |
with gr.Column():
|
62 |
prompt = gr.Textbox(label="Prompt", lines=3, value="A futuristic cityscape with flying cars and neon lights.")
|
63 |
seed = gr.Number(value=42, label="Seed (optional)")
|
|
|
|
|
64 |
run_btn = gr.Button("Generate Video")
|
65 |
with gr.Column():
|
66 |
output_video = gr.Video(label="Generated Video")
|
67 |
|
68 |
-
run_btn.click(fn=generate_video, inputs=[prompt, seed], outputs=output_video)
|
69 |
|
70 |
# Launch demo
|
71 |
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import spaces
|
4 |
from diffusers import DiffusionPipeline
|
5 |
from diffusers.quantizers import PipelineQuantizationConfig
|
6 |
+
import imageio
|
7 |
|
8 |
# Checkpoint ID
|
9 |
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
|
|
26 |
torch_dtype=torch.bfloat16
|
27 |
).to("cuda")
|
28 |
|
29 |
+
# Optimize memory and performance
|
30 |
pipe.enable_model_cpu_offload()
|
31 |
torch._dynamo.config.recompile_limit = 1000
|
32 |
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
33 |
pipe.transformer.compile()
|
34 |
|
35 |
+
# Duration function
|
36 |
+
|
37 |
+
def get_duration(prompt, height, width,
|
38 |
+
negative_prompt, duration_seconds,
|
39 |
+
guidance_scale, steps,
|
40 |
+
seed, randomize_seed,
|
41 |
+
progress):
|
42 |
+
if steps > 4 and duration_seconds > 2:
|
43 |
+
return 90
|
44 |
+
elif steps > 4 or duration_seconds > 2:
|
45 |
+
return 75
|
46 |
+
else:
|
47 |
+
return 60
|
48 |
+
|
49 |
+
# Gradio inference function with GPU duration control
|
50 |
+
@spaces.GPU(duration=get_duration)
|
51 |
+
def generate_video(prompt, seed, steps, duration_seconds):
|
52 |
generator = torch.manual_seed(seed) if seed else None
|
53 |
|
54 |
+
# Force duration-based frames
|
|
|
55 |
fps = 8
|
56 |
+
num_frames = duration_seconds * fps if duration_seconds else 16
|
57 |
|
58 |
video_frames = pipe(
|
59 |
prompt=prompt,
|
60 |
num_frames=num_frames,
|
61 |
+
generator=generator,
|
62 |
+
num_inference_steps=steps
|
63 |
).frames[0] # Take first video
|
64 |
|
65 |
# Save as GIF for Gradio preview
|
|
|
66 |
out_path = "output.gif"
|
67 |
imageio.mimsave(out_path, video_frames, fps=fps)
|
68 |
return out_path
|
69 |
|
70 |
# Build Gradio UI
|
71 |
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("## 🚀 Wan2.1 T2V - Text to Video Generator (Quantized, Dynamic Duration)")
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
prompt = gr.Textbox(label="Prompt", lines=3, value="A futuristic cityscape with flying cars and neon lights.")
|
76 |
seed = gr.Number(value=42, label="Seed (optional)")
|
77 |
+
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
|
78 |
+
duration_seconds = gr.Slider(1, 10, value=2, step=1, label="Video Duration (seconds)")
|
79 |
run_btn = gr.Button("Generate Video")
|
80 |
with gr.Column():
|
81 |
output_video = gr.Video(label="Generated Video")
|
82 |
|
83 |
+
run_btn.click(fn=generate_video, inputs=[prompt, seed, steps, duration_seconds], outputs=output_video)
|
84 |
|
85 |
# Launch demo
|
86 |
demo.launch()
|