Spaces:
Paused
Paused
Create app1.py
Browse files
app1.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
from diffusers.quantizers import PipelineQuantizationConfig
|
5 |
+
import imageio
|
6 |
+
|
7 |
+
# Checkpoint ID
|
8 |
+
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
9 |
+
|
10 |
+
# Configure quantization (bitsandbytes 4-bit)
|
11 |
+
quant_config = PipelineQuantizationConfig(
|
12 |
+
quant_backend="bitsandbytes_4bit",
|
13 |
+
quant_kwargs={
|
14 |
+
"load_in_4bit": True,
|
15 |
+
"bnb_4bit_quant_type": "nf4",
|
16 |
+
"bnb_4bit_compute_dtype": torch.bfloat16
|
17 |
+
},
|
18 |
+
components_to_quantize=["transformer", "text_encoder"]
|
19 |
+
)
|
20 |
+
|
21 |
+
# Load pipeline with quantization
|
22 |
+
pipe = DiffusionPipeline.from_pretrained(
|
23 |
+
ckpt_id,
|
24 |
+
quantization_config=quant_config,
|
25 |
+
torch_dtype=torch.bfloat16
|
26 |
+
).to("cuda")
|
27 |
+
|
28 |
+
# Optimize memory and performance
|
29 |
+
pipe.enable_model_cpu_offload()
|
30 |
+
torch._dynamo.config.recompile_limit = 1000
|
31 |
+
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
32 |
+
pipe.transformer.compile()
|
33 |
+
|
34 |
+
# Duration function
|
35 |
+
def get_duration(prompt, height, width,
|
36 |
+
negative_prompt, duration_seconds,
|
37 |
+
guidance_scale, steps,
|
38 |
+
seed, randomize_seed):
|
39 |
+
if steps > 4 and duration_seconds > 2:
|
40 |
+
return 90
|
41 |
+
elif steps > 4 or duration_seconds > 2:
|
42 |
+
return 75
|
43 |
+
else:
|
44 |
+
return 60
|
45 |
+
|
46 |
+
# Gradio inference function (no @spaces.GPU decorator) to avoid progress ContextVar error
|
47 |
+
def generate_video(prompt, seed, steps, duration_seconds):
|
48 |
+
generator = torch.manual_seed(seed) if seed else None
|
49 |
+
fps = 8
|
50 |
+
num_frames = duration_seconds * fps if duration_seconds else 16
|
51 |
+
|
52 |
+
video_frames = pipe(
|
53 |
+
prompt=prompt,
|
54 |
+
num_frames=num_frames,
|
55 |
+
generator=generator,
|
56 |
+
num_inference_steps=steps
|
57 |
+
).frames[0]
|
58 |
+
|
59 |
+
out_path = "output.gif"
|
60 |
+
imageio.mimsave(out_path, video_frames, fps=fps)
|
61 |
+
return out_path
|
62 |
+
|
63 |
+
# Build Gradio UI
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("## 🚀 Wan2.1 T2V - Text to Video Generator (Quantized, Dynamic Duration)")
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
prompt_input = gr.Textbox(label="Prompt", lines=3, value="A futuristic cityscape with flying cars and neon lights.")
|
69 |
+
seed_input = gr.Number(value=42, label="Seed (optional)")
|
70 |
+
steps_input = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
|
71 |
+
duration_input = gr.Slider(1, 10, value=2, step=1, label="Video Duration (seconds)")
|
72 |
+
run_btn = gr.Button("Generate Video")
|
73 |
+
with gr.Column():
|
74 |
+
output_video = gr.Video(label="Generated Video")
|
75 |
+
|
76 |
+
run_btn.click(fn=generate_video, inputs=[prompt_input, seed_input, steps_input, duration_input], outputs=output_video)
|
77 |
+
|
78 |
+
# Launch demo
|
79 |
+
demo.launch()
|