Spaces:
Paused
Paused
File size: 34,488 Bytes
fc6bdf0 42a1045 2b876e9 42a1045 bfd0aed 2aa538e bfd0aed 42a1045 fc6bdf0 42a1045 fc6bdf0 ad20238 fc6bdf0 b8324cc fc6bdf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
# PyTorch 2.8 (temporary hack)
import os,subprocess
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
subprocess.run(
'pip install "flash-attn<2.8.2" --no-build-isolation',
shell=True
)
import spaces
import argparse
import logging
import os
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
import sys
import json
import warnings
from datetime import datetime
import gradio as gr
warnings.filterwarnings('ignore')
import random
import torch
import torch.distributed as dist
from PIL import Image
import subprocess
import wan
from wan.configs import SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
from wan.utils.utils import cache_image, cache_video, str2bool
from wan.utils.multitalk_utils import save_video_ffmpeg
from kokoro import KPipeline
from transformers import Wav2Vec2FeatureExtractor
from src.audio_analysis.wav2vec2 import Wav2Vec2Model
import librosa
import pyloudnorm as pyln
import numpy as np
from einops import rearrange
import soundfile as sf
import re
def _validate_args(args):
# Basic check
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
if args.sample_steps is None:
args.sample_steps = 40
if args.sample_shift is None:
if args.size == 'infinitetalk-480':
args.sample_shift = 7
elif args.size == 'infinitetalk-720':
args.sample_shift = 11
else:
raise NotImplementedError(f'Not supported size')
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
0, 99999999)
# Size check
assert args.size in SUPPORTED_SIZES[
args.
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
def _parse_args():
parser = argparse.ArgumentParser(
description="Generate a image or video from a text prompt or image using Wan"
)
parser.add_argument(
"--task",
type=str,
default="infinitetalk-14B",
choices=list(WAN_CONFIGS.keys()),
help="The task to run.")
parser.add_argument(
"--size",
type=str,
default="infinitetalk-480",
choices=list(SIZE_CONFIGS.keys()),
help="The buckget size of the generated video. The aspect ratio of the output video will follow that of the input image."
)
parser.add_argument(
"--frame_num",
type=int,
default=81,
help="How many frames to be generated in one clip. The number should be 4n+1"
)
parser.add_argument(
"--ckpt_dir",
type=str,
default='./weights/Wan2.1-I2V-14B-480P',
help="The path to the Wan checkpoint directory.")
parser.add_argument(
"--quant_dir",
type=str,
default=None,
help="The path to the Wan quant checkpoint directory.")
parser.add_argument(
"--infinitetalk_dir",
type=str,
default='weights/InfiniteTalk/single/infinitetalk.safetensors',
help="The path to the InfiniteTalk checkpoint directory.")
parser.add_argument(
"--wav2vec_dir",
type=str,
default='./weights/chinese-wav2vec2-base',
help="The path to the wav2vec checkpoint directory.")
parser.add_argument(
"--dit_path",
type=str,
default=None,
help="The path to the Wan checkpoint directory.")
parser.add_argument(
"--lora_dir",
type=str,
nargs='+',
default=None,
help="The path to the LoRA checkpoint directory.")
parser.add_argument(
"--lora_scale",
type=float,
nargs='+',
default=[1.2],
help="Controls how much to influence the outputs with the LoRA parameters. Accepts multiple float values."
)
parser.add_argument(
"--offload_model",
type=str2bool,
default=None,
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
)
parser.add_argument(
"--ulysses_size",
type=int,
default=1,
help="The size of the ulysses parallelism in DiT.")
parser.add_argument(
"--ring_size",
type=int,
default=1,
help="The size of the ring attention parallelism in DiT.")
parser.add_argument(
"--t5_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for T5.")
parser.add_argument(
"--t5_cpu",
action="store_true",
default=False,
help="Whether to place T5 model on CPU.")
parser.add_argument(
"--dit_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for DiT.")
parser.add_argument(
"--save_file",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--audio_save_dir",
type=str,
default='save_audio/gradio',
help="The path to save the audio embedding.")
parser.add_argument(
"--base_seed",
type=int,
default=42,
help="The seed to use for generating the image or video.")
parser.add_argument(
"--input_json",
type=str,
default='examples.json',
help="[meta file] The condition path to generate the video.")
parser.add_argument(
"--motion_frame",
type=int,
default=9,
help="Driven frame length used in the mode of long video genration.")
parser.add_argument(
"--mode",
type=str,
default="streaming",
choices=['clip', 'streaming'],
help="clip: generate one video chunk, streaming: long video generation")
parser.add_argument(
"--sample_steps", type=int, default=None, help="The sampling steps.")
parser.add_argument(
"--sample_shift",
type=float,
default=None,
help="Sampling shift factor for flow matching schedulers.")
parser.add_argument(
"--sample_text_guide_scale",
type=float,
default=5.0,
help="Classifier free guidance scale for text control.")
parser.add_argument(
"--sample_audio_guide_scale",
type=float,
default=4.0,
help="Classifier free guidance scale for audio control.")
parser.add_argument(
"--num_persistent_param_in_dit",
type=int,
default=None,
required=False,
help="Maximum parameter quantity retained in video memory, small number to reduce VRAM required",
)
parser.add_argument(
"--use_teacache",
action="store_true",
default=False,
help="Enable teacache for video generation."
)
parser.add_argument(
"--teacache_thresh",
type=float,
default=0.2,
help="Threshold for teacache."
)
parser.add_argument(
"--use_apg",
action="store_true",
default=False,
help="Enable adaptive projected guidance for video generation (APG)."
)
parser.add_argument(
"--apg_momentum",
type=float,
default=-0.75,
help="Momentum used in adaptive projected guidance (APG)."
)
parser.add_argument(
"--apg_norm_threshold",
type=float,
default=55,
help="Norm threshold used in adaptive projected guidance (APG)."
)
parser.add_argument(
"--color_correction_strength",
type=float,
default=1.0,
help="strength for color correction [0.0 -- 1.0]."
)
parser.add_argument(
"--quant",
type=str,
default=None,
help="Quantization type, must be 'int8' or 'fp8'."
)
args = parser.parse_args()
_validate_args(args)
return args
def custom_init(device, wav2vec):
audio_encoder = Wav2Vec2Model.from_pretrained(wav2vec, local_files_only=True).to(device)
audio_encoder.feature_extractor._freeze_parameters()
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec, local_files_only=True)
return wav2vec_feature_extractor, audio_encoder
def loudness_norm(audio_array, sr=16000, lufs=-23):
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(audio_array)
if abs(loudness) > 100:
return audio_array
normalized_audio = pyln.normalize.loudness(audio_array, loudness, lufs)
return normalized_audio
def audio_prepare_multi(left_path, right_path, audio_type, sample_rate=16000):
if not (left_path=='None' or right_path=='None'):
human_speech_array1 = audio_prepare_single(left_path)
human_speech_array2 = audio_prepare_single(right_path)
elif left_path=='None':
human_speech_array2 = audio_prepare_single(right_path)
human_speech_array1 = np.zeros(human_speech_array2.shape[0])
elif right_path=='None':
human_speech_array1 = audio_prepare_single(left_path)
human_speech_array2 = np.zeros(human_speech_array1.shape[0])
if audio_type=='para':
new_human_speech1 = human_speech_array1
new_human_speech2 = human_speech_array2
elif audio_type=='add':
new_human_speech1 = np.concatenate([human_speech_array1[: human_speech_array1.shape[0]], np.zeros(human_speech_array2.shape[0])])
new_human_speech2 = np.concatenate([np.zeros(human_speech_array1.shape[0]), human_speech_array2[:human_speech_array2.shape[0]]])
sum_human_speechs = new_human_speech1 + new_human_speech2
return new_human_speech1, new_human_speech2, sum_human_speechs
def _init_logging(rank):
# logging
if rank == 0:
# set format
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
else:
logging.basicConfig(level=logging.ERROR)
def get_embedding(speech_array, wav2vec_feature_extractor, audio_encoder, sr=16000, device='cpu'):
audio_duration = len(speech_array) / sr
video_length = audio_duration * 25 # Assume the video fps is 25
# wav2vec_feature_extractor
audio_feature = np.squeeze(
wav2vec_feature_extractor(speech_array, sampling_rate=sr).input_values
)
audio_feature = torch.from_numpy(audio_feature).float().to(device=device)
audio_feature = audio_feature.unsqueeze(0)
# audio encoder
with torch.no_grad():
embeddings = audio_encoder(audio_feature, seq_len=int(video_length), output_hidden_states=True)
if len(embeddings) == 0:
print("Fail to extract audio embedding")
return None
audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0)
audio_emb = rearrange(audio_emb, "b s d -> s b d")
audio_emb = audio_emb.cpu().detach()
return audio_emb
def extract_audio_from_video(filename, sample_rate):
raw_audio_path = filename.split('/')[-1].split('.')[0]+'.wav'
ffmpeg_command = [
"ffmpeg",
"-y",
"-i",
str(filename),
"-vn",
"-acodec",
"pcm_s16le",
"-ar",
"16000",
"-ac",
"2",
str(raw_audio_path),
]
subprocess.run(ffmpeg_command, check=True)
human_speech_array, sr = librosa.load(raw_audio_path, sr=sample_rate)
human_speech_array = loudness_norm(human_speech_array, sr)
os.remove(raw_audio_path)
return human_speech_array
def audio_prepare_single(audio_path, sample_rate=16000):
ext = os.path.splitext(audio_path)[1].lower()
if ext in ['.mp4', '.mov', '.avi', '.mkv']:
human_speech_array = extract_audio_from_video(audio_path, sample_rate)
return human_speech_array
else:
human_speech_array, sr = librosa.load(audio_path, sr=sample_rate)
human_speech_array = loudness_norm(human_speech_array, sr)
return human_speech_array
def process_tts_single(text, save_dir, voice1):
s1_sentences = []
pipeline = KPipeline(lang_code='a', repo_id='weights/Kokoro-82M')
voice_tensor = torch.load(voice1, weights_only=True)
generator = pipeline(
text, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s1_sentences.append(audios)
s1_sentences = torch.concat(s1_sentences, dim=0)
save_path1 =f'{save_dir}/s1.wav'
sf.write(save_path1, s1_sentences, 24000) # save each audio file
s1, _ = librosa.load(save_path1, sr=16000)
return s1, save_path1
def process_tts_multi(text, save_dir, voice1, voice2):
pattern = r'\(s(\d+)\)\s*(.*?)(?=\s*\(s\d+\)|$)'
matches = re.findall(pattern, text, re.DOTALL)
s1_sentences = []
s2_sentences = []
pipeline = KPipeline(lang_code='a', repo_id='weights/Kokoro-82M')
for idx, (speaker, content) in enumerate(matches):
if speaker == '1':
voice_tensor = torch.load(voice1, weights_only=True)
generator = pipeline(
content, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s1_sentences.append(audios)
s2_sentences.append(torch.zeros_like(audios))
elif speaker == '2':
voice_tensor = torch.load(voice2, weights_only=True)
generator = pipeline(
content, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s2_sentences.append(audios)
s1_sentences.append(torch.zeros_like(audios))
s1_sentences = torch.concat(s1_sentences, dim=0)
s2_sentences = torch.concat(s2_sentences, dim=0)
sum_sentences = s1_sentences + s2_sentences
save_path1 =f'{save_dir}/s1.wav'
save_path2 =f'{save_dir}/s2.wav'
save_path_sum = f'{save_dir}/sum.wav'
sf.write(save_path1, s1_sentences, 24000) # save each audio file
sf.write(save_path2, s2_sentences, 24000)
sf.write(save_path_sum, sum_sentences, 24000)
s1, _ = librosa.load(save_path1, sr=16000)
s2, _ = librosa.load(save_path2, sr=16000)
# sum, _ = librosa.load(save_path_sum, sr=16000)
return s1, s2, save_path_sum
def run_graio_demo(args):
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
device = local_rank
_init_logging(rank)
if args.offload_model is None:
args.offload_model = False if world_size > 1 else True
logging.info(
f"offload_model is not specified, set to {args.offload_model}.")
if world_size > 1:
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend="nccl",
init_method="env://",
rank=rank,
world_size=world_size)
else:
assert not (
args.t5_fsdp or args.dit_fsdp
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
assert not (
args.ulysses_size > 1 or args.ring_size > 1
), f"context parallel are not supported in non-distributed environments."
if args.ulysses_size > 1 or args.ring_size > 1:
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
from xfuser.core.distributed import (
init_distributed_environment,
initialize_model_parallel,
)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=args.ring_size,
ulysses_degree=args.ulysses_size,
)
cfg = WAN_CONFIGS[args.task]
if args.ulysses_size > 1:
assert cfg.num_heads % args.ulysses_size == 0, f"`{cfg.num_heads=}` cannot be divided evenly by `{args.ulysses_size=}`."
logging.info(f"Generation job args: {args}")
logging.info(f"Generation model config: {cfg}")
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
assert args.task == "infinitetalk-14B", 'You should choose multitalk in args.task.'
wav2vec_feature_extractor, audio_encoder= custom_init('cpu', args.wav2vec_dir)
os.makedirs(args.audio_save_dir,exist_ok=True)
logging.info("Creating MultiTalk pipeline.")
wan_i2v = wan.InfiniteTalkPipeline(
config=cfg,
checkpoint_dir=args.ckpt_dir,
quant_dir=args.quant_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
lora_dir=args.lora_dir,
lora_scales=args.lora_scale,
quant=args.quant,
dit_path=args.dit_path,
infinitetalk_dir=args.infinitetalk_dir
)
if args.num_persistent_param_in_dit is not None:
wan_i2v.vram_management = True
wan_i2v.enable_vram_management(
num_persistent_param_in_dit=args.num_persistent_param_in_dit
)
@spaces.GPU(duration=60)
def generate_video(img2vid_image, vid2vid_vid, task_mode, img2vid_prompt, n_prompt, img2vid_audio_1, img2vid_audio_2,
sd_steps, seed, text_guide_scale, audio_guide_scale, mode_selector, tts_text, resolution_select, human1_voice, human2_voice):
input_data = {}
input_data["prompt"] = img2vid_prompt
if task_mode=='VideoDubbing':
input_data["cond_video"] = vid2vid_vid
else:
input_data["cond_video"] = img2vid_image
person = {}
if mode_selector == "Single Person(Local File)":
person['person1'] = img2vid_audio_1
elif mode_selector == "Single Person(TTS)":
tts_audio = {}
tts_audio['text'] = tts_text
tts_audio['human1_voice'] = human1_voice
input_data["tts_audio"] = tts_audio
elif mode_selector == "Multi Person(Local File, audio add)":
person['person1'] = img2vid_audio_1
person['person2'] = img2vid_audio_2
input_data["audio_type"] = 'add'
elif mode_selector == "Multi Person(Local File, audio parallel)":
person['person1'] = img2vid_audio_1
person['person2'] = img2vid_audio_2
input_data["audio_type"] = 'para'
else:
tts_audio = {}
tts_audio['text'] = tts_text
tts_audio['human1_voice'] = human1_voice
tts_audio['human2_voice'] = human2_voice
input_data["tts_audio"] = tts_audio
input_data["cond_audio"] = person
if 'Local File' in mode_selector:
if len(input_data['cond_audio'])==2:
new_human_speech1, new_human_speech2, sum_human_speechs = audio_prepare_multi(input_data['cond_audio']['person1'], input_data['cond_audio']['person2'], input_data['audio_type'])
audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder)
audio_embedding_2 = get_embedding(new_human_speech2, wav2vec_feature_extractor, audio_encoder)
emb1_path = os.path.join(args.audio_save_dir, '1.pt')
emb2_path = os.path.join(args.audio_save_dir, '2.pt')
sum_audio = os.path.join(args.audio_save_dir, 'sum.wav')
sf.write(sum_audio, sum_human_speechs, 16000)
torch.save(audio_embedding_1, emb1_path)
torch.save(audio_embedding_2, emb2_path)
input_data['cond_audio']['person1'] = emb1_path
input_data['cond_audio']['person2'] = emb2_path
input_data['video_audio'] = sum_audio
elif len(input_data['cond_audio'])==1:
human_speech = audio_prepare_single(input_data['cond_audio']['person1'])
audio_embedding = get_embedding(human_speech, wav2vec_feature_extractor, audio_encoder)
emb_path = os.path.join(args.audio_save_dir, '1.pt')
sum_audio = os.path.join(args.audio_save_dir, 'sum.wav')
sf.write(sum_audio, human_speech, 16000)
torch.save(audio_embedding, emb_path)
input_data['cond_audio']['person1'] = emb_path
input_data['video_audio'] = sum_audio
elif 'TTS' in mode_selector:
if 'human2_voice' not in input_data['tts_audio'].keys():
new_human_speech1, sum_audio = process_tts_single(input_data['tts_audio']['text'], args.audio_save_dir, input_data['tts_audio']['human1_voice'])
audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder)
emb1_path = os.path.join(args.audio_save_dir, '1.pt')
torch.save(audio_embedding_1, emb1_path)
input_data['cond_audio']['person1'] = emb1_path
input_data['video_audio'] = sum_audio
else:
new_human_speech1, new_human_speech2, sum_audio = process_tts_multi(input_data['tts_audio']['text'], args.audio_save_dir, input_data['tts_audio']['human1_voice'], input_data['tts_audio']['human2_voice'])
audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder)
audio_embedding_2 = get_embedding(new_human_speech2, wav2vec_feature_extractor, audio_encoder)
emb1_path = os.path.join(args.audio_save_dir, '1.pt')
emb2_path = os.path.join(args.audio_save_dir, '2.pt')
torch.save(audio_embedding_1, emb1_path)
torch.save(audio_embedding_2, emb2_path)
input_data['cond_audio']['person1'] = emb1_path
input_data['cond_audio']['person2'] = emb2_path
input_data['video_audio'] = sum_audio
# if len(input_data['cond_audio'])==2:
# new_human_speech1, new_human_speech2, sum_human_speechs = audio_prepare_multi(input_data['cond_audio']['person1'], input_data['cond_audio']['person2'], input_data['audio_type'])
# audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder)
# audio_embedding_2 = get_embedding(new_human_speech2, wav2vec_feature_extractor, audio_encoder)
# emb1_path = os.path.join(args.audio_save_dir, '1.pt')
# emb2_path = os.path.join(args.audio_save_dir, '2.pt')
# sum_audio = os.path.join(args.audio_save_dir, 'sum.wav')
# sf.write(sum_audio, sum_human_speechs, 16000)
# torch.save(audio_embedding_1, emb1_path)
# torch.save(audio_embedding_2, emb2_path)
# input_data['cond_audio']['person1'] = emb1_path
# input_data['cond_audio']['person2'] = emb2_path
# input_data['video_audio'] = sum_audio
# elif len(input_data['cond_audio'])==1:
# human_speech = audio_prepare_single(input_data['cond_audio']['person1'])
# audio_embedding = get_embedding(human_speech, wav2vec_feature_extractor, audio_encoder)
# emb_path = os.path.join(args.audio_save_dir, '1.pt')
# sum_audio = os.path.join(args.audio_save_dir, 'sum.wav')
# sf.write(sum_audio, human_speech, 16000)
# torch.save(audio_embedding, emb_path)
# input_data['cond_audio']['person1'] = emb_path
# input_data['video_audio'] = sum_audio
logging.info("Generating video ...")
video = wan_i2v.generate_infinitetalk(
input_data,
size_buckget=resolution_select,
motion_frame=args.motion_frame,
frame_num=args.frame_num,
shift=args.sample_shift,
sampling_steps=sd_steps,
text_guide_scale=text_guide_scale,
audio_guide_scale=audio_guide_scale,
seed=seed,
n_prompt=n_prompt,
offload_model=args.offload_model,
max_frames_num=args.frame_num if args.mode == 'clip' else 1000,
color_correction_strength = args.color_correction_strength,
extra_args=args,
)
if args.save_file is None:
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
formatted_prompt = input_data['prompt'].replace(" ", "_").replace("/",
"_")[:50]
args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}"
logging.info(f"Saving generated video to {args.save_file}.mp4")
save_video_ffmpeg(video, args.save_file, [input_data['video_audio']], high_quality_save=False)
logging.info("Finished.")
return args.save_file + '.mp4'
def toggle_audio_mode(mode):
if 'TTS' in mode:
return [
gr.Audio(visible=False, interactive=False),
gr.Audio(visible=False, interactive=False),
gr.Textbox(visible=True, interactive=True)
]
elif 'Single' in mode:
return [
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=False, interactive=False),
gr.Textbox(visible=False, interactive=False)
]
else:
return [
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=True, interactive=True),
gr.Textbox(visible=False, interactive=False)
]
def show_upload(mode):
if mode == "SingleImageDriven":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
MeiGen-InfiniteTalk
</div>
<div style="text-align: center; font-size: 16px; font-weight: normal; margin-bottom: 20px;">
InfiniteTalk: Audio-driven Video Generation for Spare-Frame Video Dubbing.
</div>
<div style="display: flex; justify-content: center; gap: 10px; flex-wrap: wrap;">
<a href=''><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href=''><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<a href=''><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
task_mode = gr.Radio(
choices=["SingleImageDriven", "VideoDubbing"],
label="Choose SingleImageDriven task or VideoDubbing task",
value="VideoDubbing"
)
vid2vid_vid = gr.Video(
label="Upload Input Video",
visible=True)
img2vid_image = gr.Image(
type="filepath",
label="Upload Input Image",
elem_id="image_upload",
visible=False
)
img2vid_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the video you want to generate",
)
task_mode.change(
fn=show_upload,
inputs=task_mode,
outputs=[img2vid_image, vid2vid_vid]
)
with gr.Accordion("Audio Options", open=True):
mode_selector = gr.Radio(
choices=["Single Person(Local File)", "Single Person(TTS)", "Multi Person(Local File, audio add)", "Multi Person(Local File, audio parallel)", "Multi Person(TTS)"],
label="Select person and audio mode.",
value="Single Person(Local File)"
)
resolution_select = gr.Radio(
choices=["infinitetalk-480", "infinitetalk-720"],
label="Select resolution.",
value="infinitetalk-480"
)
img2vid_audio_1 = gr.Audio(label="Conditioning Audio for speaker 1", type="filepath", visible=True)
img2vid_audio_2 = gr.Audio(label="Conditioning Audio for speaker 2", type="filepath", visible=False)
tts_text = gr.Textbox(
label="Text for TTS",
placeholder="Refer to the format in the examples",
visible=False,
interactive=False
)
mode_selector.change(
fn=toggle_audio_mode,
inputs=mode_selector,
outputs=[img2vid_audio_1, img2vid_audio_2, tts_text]
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
sd_steps = gr.Slider(
label="Diffusion steps",
minimum=1,
maximum=1000,
value=8,
step=1)
seed = gr.Slider(
label="Seed",
minimum=-1,
maximum=2147483647,
step=1,
value=42)
with gr.Row():
text_guide_scale = gr.Slider(
label="Text Guide scale",
minimum=0,
maximum=20,
value=1.0,
step=1)
audio_guide_scale = gr.Slider(
label="Audio Guide scale",
minimum=0,
maximum=20,
value=2.0,
step=1)
with gr.Row():
human1_voice = gr.Textbox(
label="Voice for the left person",
value="weights/Kokoro-82M/voices/am_adam.pt",
)
human2_voice = gr.Textbox(
label="Voice for right person",
value="weights/Kokoro-82M/voices/af_heart.pt"
)
# with gr.Row():
n_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Describe the negative prompt you want to add",
value="bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
)
run_i2v_button = gr.Button("Generate Video")
with gr.Column(scale=2):
result_gallery = gr.Video(
label='Generated Video', interactive=False, height=600, )
gr.Examples(
examples = [
['SingleImageDriven', 'examples/single/ref_image.png', None, "A woman is passionately singing into a professional microphone in a recording studio. She wears large black headphones and a dark cardigan over a gray top. Her long, wavy brown hair frames her face as she looks slightly upwards, her mouth open mid-song. The studio is equipped with various audio equipment, including a mixing console and a keyboard, with soundproofing panels on the walls. The lighting is warm and focused on her, creating a professional and intimate atmosphere. A close-up shot captures her expressive performance.", "Single Person(Local File)", "examples/single/1.wav", None, None],
['VideoDubbing', None, 'examples/single/ref_video.mp4', "A man is talking", "Single Person(Local File)", "examples/single/1.wav", None, None],
],
inputs = [task_mode, img2vid_image, vid2vid_vid, img2vid_prompt, mode_selector, img2vid_audio_1, img2vid_audio_2, tts_text],
)
run_i2v_button.click(
fn=generate_video,
inputs=[img2vid_image, vid2vid_vid, task_mode, img2vid_prompt, n_prompt, img2vid_audio_1, img2vid_audio_2,sd_steps, seed, text_guide_scale, audio_guide_scale, mode_selector, tts_text, resolution_select, human1_voice, human2_voice],
outputs=[result_gallery],
)
demo.launch()
if __name__ == "__main__":
args = _parse_args()
run_graio_demo(args)
|