Spaces:
Running
Running
| # WIP, coming soon ish | |
| from functools import partial | |
| import torch | |
| import yaml | |
| from toolkit.accelerator import unwrap_model | |
| from toolkit.basic import flush | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from transformers import AutoTokenizer, UMT5EncoderModel | |
| from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, WanTransformer3DModel | |
| import os | |
| import sys | |
| import weakref | |
| import torch | |
| import yaml | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from toolkit.prompt_utils import PromptEmbeds | |
| import os | |
| import copy | |
| from toolkit.config_modules import ModelConfig, GenerateImageConfig | |
| import torch | |
| from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler | |
| from transformers import CLIPVisionModel, CLIPImageProcessor | |
| import torch.nn.functional as F | |
| from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput | |
| from diffusers.pipelines.wan.pipeline_wan import XLA_AVAILABLE | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| from diffusers.video_processor import VideoProcessor | |
| from diffusers.image_processor import PipelineImageInput | |
| from PIL import Image | |
| from .wan21 import \ | |
| scheduler_configUniPC, \ | |
| scheduler_config, \ | |
| Wan21 | |
| from .wan_utils import add_first_frame_conditioning | |
| class AggressiveWanI2VUnloadPipeline(WanImageToVideoPipeline): | |
| def __init__( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| text_encoder: UMT5EncoderModel, | |
| image_encoder: CLIPVisionModel, | |
| image_processor: CLIPImageProcessor, | |
| transformer: WanTransformer3DModel, | |
| vae: AutoencoderKLWan, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| device: torch.device = torch.device("cuda"), | |
| ): | |
| super().__init__( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| image_encoder=image_encoder, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_processor=image_processor, | |
| ) | |
| self._exec_device = device | |
| def _execution_device(self): | |
| return self._exec_device | |
| def __call__( | |
| self, | |
| image: PipelineImageInput, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| height: int = 480, | |
| width: int = 832, | |
| num_frames: int = 81, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 5.0, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| ): | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # unload vae and transformer | |
| device = self.transformer.device | |
| self.text_encoder.to(device) | |
| self.vae.to('cpu') | |
| self.image_encoder.to('cpu') | |
| flush() | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| negative_prompt, | |
| image, | |
| height, | |
| width, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| # unload text encoder | |
| print("Unloading text encoder") | |
| self.text_encoder.to("cpu") | |
| self.transformer.to(device) | |
| flush() | |
| # Encode image embedding | |
| transformer_dtype = self.transformer.dtype | |
| prompt_embeds = prompt_embeds.to(transformer_dtype) | |
| if negative_prompt_embeds is not None: | |
| negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) | |
| self.image_encoder.to(device) | |
| self.vae.to(device) | |
| image_embeds = self.encode_image(image) | |
| image_embeds = image_embeds.repeat(batch_size, 1, 1) | |
| image_embeds = image_embeds.to(transformer_dtype) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.vae.config.z_dim | |
| image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32) | |
| latents, condition = self.prepare_latents( | |
| image, | |
| batch_size * num_videos_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| num_frames, | |
| torch.bfloat16, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| self.image_encoder.to('cpu') | |
| self.vae.to('cpu') | |
| flush() | |
| # 6. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype) | |
| timestep = t.expand(latents.shape[0]) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=prompt_embeds, | |
| encoder_hidden_states_image=image_embeds, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if self.do_classifier_free_guidance: | |
| noise_uncond = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| encoder_hidden_states_image=image_embeds, # todo I think unconditional should be scaled down version | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| self.vae.to(device) | |
| if not output_type == "latent": | |
| latents = latents.to(self.vae.dtype) | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean) | |
| .view(1, self.vae.config.z_dim, 1, 1, 1) | |
| .to(latents.device, latents.dtype) | |
| ) | |
| latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
| latents.device, latents.dtype | |
| ) | |
| latents = latents / latents_std + latents_mean | |
| video = self.vae.decode(latents, return_dict=False)[0] | |
| video = self.video_processor.postprocess_video(video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return WanPipelineOutput(frames=video) | |
| def encode_image(self, image: PipelineImageInput): | |
| image = self.image_processor(images=image, return_tensors="pt") | |
| image = {k: v.to(self.image_encoder.device, dtype=self.image_encoder.dtype) for k, v in image.items()} | |
| image_embeds = self.image_encoder(**image, output_hidden_states=True) | |
| return image_embeds.hidden_states[-2] | |
| class Wan21I2V(Wan21): | |
| arch = 'wan21_i2v' | |
| def __init__( | |
| self, | |
| device, | |
| model_config: ModelConfig, | |
| dtype='bf16', | |
| custom_pipeline=None, | |
| noise_scheduler=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| device, model_config, dtype, | |
| custom_pipeline, noise_scheduler, **kwargs | |
| ) | |
| self.is_flow_matching = True | |
| self.is_transformer = True | |
| self.target_lora_modules = ['WanTransformer3DModel'] | |
| self.image_encoder: CLIPVisionModel = None | |
| self.image_processor: CLIPImageProcessor = None | |
| def load_model(self): | |
| # call the super class to load most of the model | |
| super().load_model() | |
| if self.model_config.low_vram: | |
| # unload text encoder | |
| self.text_encoder.to("cpu") | |
| # all the base stuff is loaded. We now need to load the vision encoder stuff | |
| dtype = self.torch_dtype | |
| try: | |
| self.image_processor = CLIPImageProcessor.from_pretrained( | |
| self.model_config.extras_name_or_path , | |
| subfolder="image_processor" | |
| ) | |
| self.image_encoder = CLIPVisionModel.from_pretrained( | |
| self.model_config.extras_name_or_path, | |
| subfolder="image_encoder", | |
| torch_dtype=dtype, | |
| ) | |
| except Exception as e: | |
| # load from name_or_path | |
| self.image_processor = CLIPImageProcessor.from_pretrained( | |
| self.model_config.name_or_path_original, | |
| subfolder="image_processor" | |
| ) | |
| self.image_encoder = CLIPVisionModel.from_pretrained( | |
| self.model_config.name_or_path_original, | |
| subfolder="image_encoder", | |
| torch_dtype=dtype, | |
| ) | |
| self.image_encoder.to(self.device_torch, dtype=dtype) | |
| self.image_encoder.eval() | |
| self.image_encoder.requires_grad_(False) | |
| if self.model_config.low_vram: | |
| # unload image encoder | |
| self.image_encoder.to("cpu") | |
| # rebuild the pipeline | |
| self.pipeline = self.get_generation_pipeline() | |
| flush() | |
| def generate_images( | |
| self, | |
| image_configs, | |
| sampler=None, | |
| pipeline=None, | |
| ): | |
| # will oom on 24gb vram if we dont unload vision encoder first | |
| if self.model_config.low_vram: | |
| # unload image encoder | |
| self.image_encoder.to("cpu") | |
| self.vae.to("cpu") | |
| self.transformer.to("cpu") | |
| flush() | |
| super().generate_images( | |
| image_configs, | |
| sampler=sampler, | |
| pipeline=pipeline, | |
| ) | |
| def set_device_state_preset(self, *args, **kwargs): | |
| # set the device state to cpu for the image encoder | |
| if self.model_config.low_vram: | |
| return | |
| super().set_device_state_preset(*args, **kwargs) | |
| def get_generation_pipeline(self): | |
| scheduler = UniPCMultistepScheduler(**scheduler_configUniPC) | |
| if self.model_config.low_vram: | |
| pipeline = AggressiveWanI2VUnloadPipeline( | |
| vae=self.vae, | |
| transformer=self.model, | |
| text_encoder=self.text_encoder, | |
| tokenizer=self.tokenizer, | |
| scheduler=scheduler, | |
| image_encoder=self.image_encoder, | |
| image_processor=self.image_processor, | |
| device=self.device_torch | |
| ) | |
| else: | |
| pipeline = WanImageToVideoPipeline( | |
| vae=self.vae, | |
| transformer=self.unet, | |
| text_encoder=self.text_encoder, | |
| tokenizer=self.tokenizer, | |
| scheduler=scheduler, | |
| image_encoder=self.image_encoder, | |
| image_processor=self.image_processor, | |
| ) | |
| # pipeline = pipeline.to(self.device_torch) | |
| return pipeline | |
| def generate_single_image( | |
| self, | |
| pipeline: WanImageToVideoPipeline, | |
| gen_config: GenerateImageConfig, | |
| conditional_embeds: PromptEmbeds, | |
| unconditional_embeds: PromptEmbeds, | |
| generator: torch.Generator, | |
| extra: dict, | |
| ): | |
| # reactivate progress bar since this is slooooow | |
| pipeline.set_progress_bar_config(disable=False) | |
| # pipeline = pipeline.to(self.device_torch) | |
| if gen_config.ctrl_img is None: | |
| raise ValueError("I2V samples must have a control image") | |
| control_img = Image.open(gen_config.ctrl_img).convert("RGB") | |
| height = gen_config.height | |
| width = gen_config.width | |
| # make sure they are divisible by 16 | |
| height = height // 16 * 16 | |
| width = width // 16 * 16 | |
| # resize the control image | |
| control_img = control_img.resize((width, height), Image.LANCZOS) | |
| output = pipeline( | |
| image=control_img, | |
| prompt_embeds=conditional_embeds.text_embeds.to( | |
| self.device_torch, dtype=self.torch_dtype), | |
| negative_prompt_embeds=unconditional_embeds.text_embeds.to( | |
| self.device_torch, dtype=self.torch_dtype), | |
| height=height, | |
| width=width, | |
| num_inference_steps=gen_config.num_inference_steps, | |
| guidance_scale=gen_config.guidance_scale, | |
| latents=gen_config.latents, | |
| num_frames=gen_config.num_frames, | |
| generator=generator, | |
| return_dict=False, | |
| output_type="pil", | |
| **extra | |
| )[0] | |
| # shape = [1, frames, channels, height, width] | |
| batch_item = output[0] # list of pil images | |
| if gen_config.num_frames > 1: | |
| return batch_item # return the frames. | |
| else: | |
| # get just the first image | |
| img = batch_item[0] | |
| return img | |
| def preprocess_clip_image(self, image_n1p1): | |
| # tensor shape: (bs, ch, height, width) with values in range [-1, 1] | |
| # Convert from [-1, 1] to [0, 1] range | |
| tensor = (image_n1p1 + 1) / 2 | |
| # Resize to 224x224 (using bilinear interpolation, which is resample=3 in PIL) | |
| if tensor.shape[2] != 224 or tensor.shape[3] != 224: | |
| tensor = F.interpolate(tensor, size=(224, 224), mode='bilinear', align_corners=False) | |
| # Normalize with mean and std | |
| mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(tensor.device) | |
| std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(tensor.device) | |
| tensor = (tensor - mean) / std | |
| return tensor | |
| def get_noise_prediction( | |
| self, | |
| latent_model_input: torch.Tensor, | |
| timestep: torch.Tensor, # 0 to 1000 scale | |
| text_embeddings: PromptEmbeds, | |
| batch: DataLoaderBatchDTO, | |
| **kwargs | |
| ): | |
| # videos come in (bs, num_frames, channels, height, width) | |
| # images come in (bs, channels, height, width) | |
| with torch.no_grad(): | |
| frames = batch.tensor | |
| if len(frames.shape) == 4: | |
| first_frames = frames | |
| elif len(frames.shape) == 5: | |
| first_frames = frames[:, 0] | |
| else: | |
| raise ValueError(f"Unknown frame shape {frames.shape}") | |
| # first_frames shape is (bs, channels, height, width), -1 to 1 | |
| preprocessed_frames = self.preprocess_clip_image(first_frames) | |
| preprocessed_frames = preprocessed_frames.to(self.device_torch, dtype=self.torch_dtype) | |
| # preprocessed_frame shape is (bs, 3, 224, 224) | |
| self.image_encoder.to(self.device_torch) | |
| image_embeds_full = self.image_encoder(preprocessed_frames, output_hidden_states=True) | |
| image_embeds = image_embeds_full.hidden_states[-2] | |
| image_embeds = image_embeds.to(self.device_torch, dtype=self.torch_dtype) | |
| # Add conditioning using the standalone function | |
| conditioned_latent = add_first_frame_conditioning( | |
| latent_model_input=latent_model_input, | |
| first_frame=first_frames, | |
| vae=self.vae | |
| ) | |
| noise_pred = self.model( | |
| hidden_states=conditioned_latent, | |
| timestep=timestep, | |
| encoder_hidden_states=text_embeddings.text_embeds, | |
| encoder_hidden_states_image=image_embeds, | |
| return_dict=False, | |
| **kwargs | |
| )[0] | |
| return noise_pred |