File size: 7,465 Bytes
de0c2cf
 
 
 
 
 
 
 
 
a76e4e2
de0c2cf
7e22793
 
de0c2cf
 
7e22793
a5af344
 
 
de0c2cf
 
c7f856b
 
7e22793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c2f39
 
a7ce240
970297d
 
a7ce240
107b889
a7ce240
 
 
 
 
970297d
 
 
 
 
 
 
a7ce240
 
970297d
 
 
 
a7ce240
 
35c2f39
b020c6c
 
 
 
107b889
35c2f39
 
 
 
 
 
 
 
 
 
b020c6c
 
 
 
 
 
35c2f39
 
b020c6c
35c2f39
 
 
 
 
b020c6c
35c2f39
 
 
 
b020c6c
35c2f39
 
 
 
 
 
b020c6c
35c2f39
 
 
 
b020c6c
 
 
 
 
35c2f39
 
 
 
 
107b889
7e22793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f32fa5
 
 
 
 
 
 
27cc4b8
 
685a3eb
2f32fa5
 
 
 
27cc4b8
685a3eb
 
 
2f32fa5
685a3eb
2f32fa5
 
685a3eb
 
2f32fa5
 
685a3eb
2f32fa5
 
 
685a3eb
 
2f32fa5
 
 
685a3eb
2f32fa5
 
 
27cc4b8
685a3eb
27cc4b8
 
 
 
685a3eb
 
27cc4b8
685a3eb
27cc4b8
 
 
 
 
 
 
 
 
 
685a3eb
27cc4b8
 
 
 
 
 
 
 
 
 
2f32fa5
685a3eb
 
 
 
2f32fa5
 
 
27cc4b8
2f32fa5
7058e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242


import os
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.makedirs("/tmp/hf_cache", exist_ok=True)

from fastapi import FastAPI, Query
from huggingface_hub import list_repo_files, hf_hub_download, upload_file
import io
import requests

from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware


import os
import os
import zipfile
import tempfile  # βœ… Add this!




app = FastAPI()

# CORS setup to allow requests from your frontend
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Replace "*" with your frontend domain in production
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
def health_check():
    return {"status": "βœ… FastAPI running on Hugging Face Spaces!"}



REPO_ID = "rahul7star/ohamlab"
FOLDER = "demo"
BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"

#show all images in a DIR at UI FE
@app.get("/images")
def list_images():
    try:
        all_files = list_repo_files(REPO_ID)

        folder_prefix = FOLDER.rstrip("/") + "/"

        files_in_folder = [
            f for f in all_files
            if f.startswith(folder_prefix)
            and "/" not in f[len(folder_prefix):]  # no subfolder files
            and f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
        ]

        urls = [BASE_URL + f for f in files_in_folder]

        return {"images": urls}

    except Exception as e:
        return {"error": str(e)}

from datetime import datetime
import tempfile
import uuid

# upload zip from UI 
@app.post("/upload-zip")
async def upload_zip(file: UploadFile = File(...)):
    if not file.filename.endswith(".zip"):
        return {"error": "Please upload a .zip file"}

    # Save the ZIP to /tmp
    temp_zip_path = f"/tmp/{file.filename}"
    with open(temp_zip_path, "wb") as f:
        f.write(await file.read())

    # Create a unique subfolder name inside 'demo/'
    timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
    unique_id = uuid.uuid4().hex[:6]
    folder_name = f"upload_{timestamp}_{unique_id}"
    hf_folder_prefix = f"demo/{folder_name}"

    try:
        with tempfile.TemporaryDirectory() as extract_dir:
            # Extract zip
            with zipfile.ZipFile(temp_zip_path, 'r') as zip_ref:
                zip_ref.extractall(extract_dir)

            uploaded_files = []

            # Upload all extracted files
            for root_dir, _, files in os.walk(extract_dir):
                for name in files:
                    file_path = os.path.join(root_dir, name)
                    relative_path = os.path.relpath(file_path, extract_dir)
                    repo_path = f"{hf_folder_prefix}/{relative_path}".replace("\\", "/")

                    upload_file(
                        path_or_fileobj=file_path,
                        path_in_repo=repo_path,
                        repo_id="rahul7star/ohamlab",
                        repo_type="model",
                        commit_message=f"Upload {relative_path} to {folder_name}",
                        token=True,
                    )
                    uploaded_files.append(repo_path)

        return {
            "message": f"βœ… Uploaded {len(uploaded_files)} files",
            "folder": folder_name,
            "files": uploaded_files,
        }

    except Exception as e:
        return {"error": f"❌ Failed to process zip: {str(e)}"}

    
# upload a single file from UI
@app.post("/upload")
async def upload_image(file: UploadFile = File(...)):
    filename = file.filename
    contents = await file.read()

    # Save temporarily
    temp_path = f"/tmp/{filename}"
    with open(temp_path, "wb") as f:
        f.write(contents)

    try:
        upload_file(
            path_or_fileobj=temp_path,
            path_in_repo=f"demo/{filename}",
            repo_id="rahul7star/ohamlab",
            repo_type="model",
            commit_message=f"Upload {filename} to demo folder",
            token=True,  # uses HF_TOKEN from Space secrets
        )
        return {"message": f"βœ… {filename} uploaded successfully!"}
    except Exception as e:
        return {"error": f"❌ Upload failed: {str(e)}"}






#Tranining Data set start fitering data for traninig


T_REPO_ID = "rahul7star/ohamlab"
DESCRIPTION_TEXT = (
    "Ra3hul is wearing a black jacket over a striped white t-shirt with blue jeans. "
    "He is standing near a lake with his arms spread wide open, with mountains and cloudy skies in the background."
)

def is_image_file(filename: str) -> bool:
    return filename.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))

@app.post("/filter-images")
def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
    try:
        all_files = list_repo_files(T_REPO_ID)
        folder_prefix = folder.rstrip("/") + "/"
        filter_folder = f"filter-{folder.rstrip('/')}"
        filter_prefix = filter_folder + "/"

        # Filter images only directly in the folder (no subfolders)
        image_files = [
            f for f in all_files
            if f.startswith(folder_prefix)
            and "/" not in f[len(folder_prefix):]  # no deeper path
            and is_image_file(f)
        ]

        if not image_files:
            return {"error": f"No images found in folder '{folder}'"}

        uploaded_files = []

        for idx, orig_path in enumerate(image_files, start=1):
            # Download image content bytes (uses local cache)
            local_path = hf_hub_download(repo_id=T_REPO_ID, filename=orig_path)
            with open(local_path, "rb") as f:
                file_bytes = f.read()

            # Rename images as image1.jpeg, image2.jpeg, ...
            new_image_name = f"image{idx}.jpeg"

            # Upload renamed image from memory
            upload_file(
                path_or_fileobj=io.BytesIO(file_bytes),
                path_in_repo=filter_prefix + new_image_name,
                repo_id=T_REPO_ID,
                repo_type="model",
                commit_message=f"Upload renamed image {new_image_name} to {filter_folder}",
                token=True,
            )
            uploaded_files.append(filter_prefix + new_image_name)

            # Create and upload text file for each image
            txt_filename = f"image{idx}.txt"
            upload_file(
                path_or_fileobj=io.BytesIO(DESCRIPTION_TEXT.encode("utf-8")),
                path_in_repo=filter_prefix + txt_filename,
                repo_id=T_REPO_ID,
                repo_type="model",
                commit_message=f"Upload text file {txt_filename} to {filter_folder}",
                token=True,
            )
            uploaded_files.append(filter_prefix + txt_filename)

        return {
            "message": f"Processed and uploaded {len(image_files)} images and text files.",
            "files": uploaded_files,
        }

    except Exception as e:
        return {"error": str(e)}

        


# Test call another space and send the payload
@app.post("/webhook-trigger")
def call_other_space():
    try:
        # You can dynamically collect input from elsewhere too
        payload = {"input": "Start training from external trigger"}

        res = requests.post(
            "https://rahul7star-ohamlab-ai-toolkit.hf.space/trigger",
            json=payload,
            timeout=30,
        )
        return res.json()
    except Exception as e:
        return {"error": str(e)}