tshirt / app.py
rahul7star's picture
Update app.py
9da351a verified
raw
history blame
3.06 kB
import gradio as gr
import requests
import os
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import time
# Defining the repository information and the trigger word
repo = "stabilityai/stable-diffusion-xl-base-1.0"
trigger_word = "T shirt design, TshirtDesignAF, "
def generate_images(prompt):
print("Generating 10 unique images with prompt:", prompt)
api_url = f"https://api-inference.huggingface.co/models/{repo}"
#token = os.getenv("API_TOKEN") # Uncomment and use your Hugging Face API token
headers = {
#"Authorization": f"Bearer {token}"
}
images = []
for i in range(10):
full_prompt = f"{prompt} {trigger_word} unique_design_{i}"
payload = {
"inputs": full_prompt,
"parameters": {
"negative_prompt": "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)",
"num_inference_steps": 30,
"scheduler": "DPMSolverMultistepScheduler"
},
}
error_count = 0
pbar = tqdm(total=None, desc=f"Loading model {i+1}/10")
while True:
print(f"Sending request to API for image {i+1}...")
response = requests.post(api_url, headers=headers, json=payload)
print("API response status code:", response.status_code)
if response.status_code == 200:
print(f"Image {i+1} generation successful!")
img = Image.open(BytesIO(response.content))
images.append(img)
break
elif response.status_code == 503:
time.sleep(1)
pbar.update(1)
elif response.status_code == 500 and error_count < 5:
time.sleep(1)
error_count += 1
else:
print(f"API Error for image {i+1}: {response.status_code}")
raise Exception(f"API Error: {response.status_code}")
return images
iface = gr.Interface(
fn=generate_images,
inputs=gr.Textbox(lines=2, placeholder="Type your prompt here..."),
outputs=gr.Gallery(label="Generated Images", columns=5), # Display images in a grid of 5 columns
title="Design by rahul7star",
description="Make designs for your clothes",
examples=[["Cute Panda"], ["Skull"]]
)
print("Launching Gradio interface...")
iface.launch()