|
|
"""Kling API Nodes |
|
|
|
|
|
For source of truth on the allowed permutations of request fields, please reference: |
|
|
- [Compatibility Table](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
from typing import Optional, TypeVar, Any |
|
|
from collections.abc import Callable |
|
|
import math |
|
|
import logging |
|
|
|
|
|
import torch |
|
|
|
|
|
from comfy_api_nodes.apis import ( |
|
|
KlingTaskStatus, |
|
|
KlingCameraControl, |
|
|
KlingCameraConfig, |
|
|
KlingCameraControlType, |
|
|
KlingVideoGenDuration, |
|
|
KlingVideoGenMode, |
|
|
KlingVideoGenAspectRatio, |
|
|
KlingVideoGenModelName, |
|
|
KlingText2VideoRequest, |
|
|
KlingText2VideoResponse, |
|
|
KlingImage2VideoRequest, |
|
|
KlingImage2VideoResponse, |
|
|
KlingVideoExtendRequest, |
|
|
KlingVideoExtendResponse, |
|
|
KlingLipSyncVoiceLanguage, |
|
|
KlingLipSyncInputObject, |
|
|
KlingLipSyncRequest, |
|
|
KlingLipSyncResponse, |
|
|
KlingVirtualTryOnModelName, |
|
|
KlingVirtualTryOnRequest, |
|
|
KlingVirtualTryOnResponse, |
|
|
KlingVideoResult, |
|
|
KlingImageResult, |
|
|
KlingImageGenerationsRequest, |
|
|
KlingImageGenerationsResponse, |
|
|
KlingImageGenImageReferenceType, |
|
|
KlingImageGenModelName, |
|
|
KlingImageGenAspectRatio, |
|
|
KlingVideoEffectsRequest, |
|
|
KlingVideoEffectsResponse, |
|
|
KlingDualCharacterEffectsScene, |
|
|
KlingSingleImageEffectsScene, |
|
|
KlingDualCharacterEffectInput, |
|
|
KlingSingleImageEffectInput, |
|
|
KlingCharacterEffectModelName, |
|
|
KlingSingleImageEffectModelName, |
|
|
) |
|
|
from comfy_api_nodes.apis.client import ( |
|
|
ApiEndpoint, |
|
|
HttpMethod, |
|
|
SynchronousOperation, |
|
|
PollingOperation, |
|
|
EmptyRequest, |
|
|
) |
|
|
from comfy_api_nodes.apinode_utils import ( |
|
|
tensor_to_base64_string, |
|
|
download_url_to_video_output, |
|
|
upload_video_to_comfyapi, |
|
|
upload_audio_to_comfyapi, |
|
|
download_url_to_image_tensor, |
|
|
) |
|
|
from comfy_api_nodes.mapper_utils import model_field_to_node_input |
|
|
from comfy_api_nodes.util.validation_utils import ( |
|
|
validate_image_dimensions, |
|
|
validate_image_aspect_ratio, |
|
|
validate_video_dimensions, |
|
|
validate_video_duration, |
|
|
) |
|
|
from comfy_api.input.basic_types import AudioInput |
|
|
from comfy_api.input.video_types import VideoInput |
|
|
from comfy_api.input_impl import VideoFromFile |
|
|
from comfy.comfy_types.node_typing import IO, InputTypeOptions, ComfyNodeABC |
|
|
|
|
|
KLING_API_VERSION = "v1" |
|
|
PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" |
|
|
PATH_IMAGE_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/image2video" |
|
|
PATH_VIDEO_EXTEND = f"/proxy/kling/{KLING_API_VERSION}/videos/video-extend" |
|
|
PATH_LIP_SYNC = f"/proxy/kling/{KLING_API_VERSION}/videos/lip-sync" |
|
|
PATH_VIDEO_EFFECTS = f"/proxy/kling/{KLING_API_VERSION}/videos/effects" |
|
|
PATH_CHARACTER_IMAGE = f"/proxy/kling/{KLING_API_VERSION}/images/generations" |
|
|
PATH_VIRTUAL_TRY_ON = f"/proxy/kling/{KLING_API_VERSION}/images/kolors-virtual-try-on" |
|
|
PATH_IMAGE_GENERATIONS = f"/proxy/kling/{KLING_API_VERSION}/images/generations" |
|
|
|
|
|
MAX_PROMPT_LENGTH_T2V = 2500 |
|
|
MAX_PROMPT_LENGTH_I2V = 500 |
|
|
MAX_PROMPT_LENGTH_IMAGE_GEN = 500 |
|
|
MAX_NEGATIVE_PROMPT_LENGTH_IMAGE_GEN = 200 |
|
|
MAX_PROMPT_LENGTH_LIP_SYNC = 120 |
|
|
|
|
|
AVERAGE_DURATION_T2V = 319 |
|
|
AVERAGE_DURATION_I2V = 164 |
|
|
AVERAGE_DURATION_LIP_SYNC = 455 |
|
|
AVERAGE_DURATION_VIRTUAL_TRY_ON = 19 |
|
|
AVERAGE_DURATION_IMAGE_GEN = 32 |
|
|
AVERAGE_DURATION_VIDEO_EFFECTS = 320 |
|
|
AVERAGE_DURATION_VIDEO_EXTEND = 320 |
|
|
|
|
|
R = TypeVar("R") |
|
|
|
|
|
|
|
|
class KlingApiError(Exception): |
|
|
"""Base exception for Kling API errors.""" |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
async def poll_until_finished( |
|
|
auth_kwargs: dict[str, str], |
|
|
api_endpoint: ApiEndpoint[Any, R], |
|
|
result_url_extractor: Optional[Callable[[R], str]] = None, |
|
|
estimated_duration: Optional[int] = None, |
|
|
node_id: Optional[str] = None, |
|
|
) -> R: |
|
|
"""Polls the Kling API endpoint until the task reaches a terminal state, then returns the response.""" |
|
|
return await PollingOperation( |
|
|
poll_endpoint=api_endpoint, |
|
|
completed_statuses=[ |
|
|
KlingTaskStatus.succeed.value, |
|
|
], |
|
|
failed_statuses=[KlingTaskStatus.failed.value], |
|
|
status_extractor=lambda response: ( |
|
|
response.data.task_status.value |
|
|
if response.data and response.data.task_status |
|
|
else None |
|
|
), |
|
|
auth_kwargs=auth_kwargs, |
|
|
result_url_extractor=result_url_extractor, |
|
|
estimated_duration=estimated_duration, |
|
|
node_id=node_id, |
|
|
poll_interval=16.0, |
|
|
max_poll_attempts=256, |
|
|
).execute() |
|
|
|
|
|
|
|
|
def is_valid_camera_control_configs(configs: list[float]) -> bool: |
|
|
"""Verifies that at least one camera control configuration is non-zero.""" |
|
|
return any(not math.isclose(value, 0.0) for value in configs) |
|
|
|
|
|
|
|
|
def is_valid_prompt(prompt: str) -> bool: |
|
|
"""Verifies that the prompt is not empty.""" |
|
|
return bool(prompt) |
|
|
|
|
|
|
|
|
def is_valid_task_creation_response(response: KlingText2VideoResponse) -> bool: |
|
|
"""Verifies that the initial response contains a task ID.""" |
|
|
return bool(response.data.task_id) |
|
|
|
|
|
|
|
|
def is_valid_video_response(response: KlingText2VideoResponse) -> bool: |
|
|
"""Verifies that the response contains a task result with at least one video.""" |
|
|
return ( |
|
|
response.data is not None |
|
|
and response.data.task_result is not None |
|
|
and response.data.task_result.videos is not None |
|
|
and len(response.data.task_result.videos) > 0 |
|
|
) |
|
|
|
|
|
|
|
|
def is_valid_image_response(response: KlingVirtualTryOnResponse) -> bool: |
|
|
"""Verifies that the response contains a task result with at least one image.""" |
|
|
return ( |
|
|
response.data is not None |
|
|
and response.data.task_result is not None |
|
|
and response.data.task_result.images is not None |
|
|
and len(response.data.task_result.images) > 0 |
|
|
) |
|
|
|
|
|
|
|
|
def validate_prompts(prompt: str, negative_prompt: str, max_length: int) -> bool: |
|
|
"""Verifies that the positive prompt is not empty and that neither promt is too long.""" |
|
|
if not prompt: |
|
|
raise ValueError("Positive prompt is empty") |
|
|
if len(prompt) > max_length: |
|
|
raise ValueError(f"Positive prompt is too long: {len(prompt)} characters") |
|
|
if negative_prompt and len(negative_prompt) > max_length: |
|
|
raise ValueError( |
|
|
f"Negative prompt is too long: {len(negative_prompt)} characters" |
|
|
) |
|
|
return True |
|
|
|
|
|
|
|
|
def validate_task_creation_response(response) -> None: |
|
|
"""Validates that the Kling task creation request was successful.""" |
|
|
if not is_valid_task_creation_response(response): |
|
|
error_msg = f"Kling initial request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" |
|
|
logging.error(error_msg) |
|
|
raise KlingApiError(error_msg) |
|
|
|
|
|
|
|
|
def validate_video_result_response(response) -> None: |
|
|
"""Validates that the Kling task result contains a video.""" |
|
|
if not is_valid_video_response(response): |
|
|
error_msg = f"Kling task {response.data.task_id} succeeded but no video data found in response." |
|
|
logging.error(f"Error: {error_msg}.\nResponse: {response}") |
|
|
raise KlingApiError(error_msg) |
|
|
|
|
|
|
|
|
def validate_image_result_response(response) -> None: |
|
|
"""Validates that the Kling task result contains an image.""" |
|
|
if not is_valid_image_response(response): |
|
|
error_msg = f"Kling task {response.data.task_id} succeeded but no image data found in response." |
|
|
logging.error(f"Error: {error_msg}.\nResponse: {response}") |
|
|
raise KlingApiError(error_msg) |
|
|
|
|
|
|
|
|
def validate_input_image(image: torch.Tensor) -> None: |
|
|
""" |
|
|
Validates the input image adheres to the expectations of the Kling API: |
|
|
- The image resolution should not be less than 300*300px |
|
|
- The aspect ratio of the image should be between 1:2.5 ~ 2.5:1 |
|
|
|
|
|
See: https://app.klingai.com/global/dev/document-api/apiReference/model/imageToVideo |
|
|
""" |
|
|
validate_image_dimensions(image, min_width=300, min_height=300) |
|
|
validate_image_aspect_ratio(image, min_aspect_ratio=1 / 2.5, max_aspect_ratio=2.5) |
|
|
|
|
|
|
|
|
def get_camera_control_input_config( |
|
|
tooltip: str, default: float = 0.0 |
|
|
) -> tuple[IO, InputTypeOptions]: |
|
|
"""Returns common InputTypeOptions for Kling camera control configurations.""" |
|
|
input_config = { |
|
|
"default": default, |
|
|
"min": -10.0, |
|
|
"max": 10.0, |
|
|
"step": 0.25, |
|
|
"display": "slider", |
|
|
"tooltip": tooltip, |
|
|
} |
|
|
return IO.FLOAT, input_config |
|
|
|
|
|
|
|
|
def get_video_from_response(response) -> KlingVideoResult: |
|
|
"""Returns the first video object from the Kling video generation task result. |
|
|
Will raise an error if the response is not valid. |
|
|
""" |
|
|
video = response.data.task_result.videos[0] |
|
|
logging.info( |
|
|
"Kling task %s succeeded. Video URL: %s", response.data.task_id, video.url |
|
|
) |
|
|
return video |
|
|
|
|
|
|
|
|
def get_video_url_from_response(response) -> Optional[str]: |
|
|
"""Returns the first video url from the Kling video generation task result. |
|
|
Will not raise an error if the response is not valid. |
|
|
""" |
|
|
if response and is_valid_video_response(response): |
|
|
return str(get_video_from_response(response).url) |
|
|
else: |
|
|
return None |
|
|
|
|
|
|
|
|
def get_images_from_response(response) -> list[KlingImageResult]: |
|
|
"""Returns the list of image objects from the Kling image generation task result. |
|
|
Will raise an error if the response is not valid. |
|
|
""" |
|
|
images = response.data.task_result.images |
|
|
logging.info("Kling task %s succeeded. Images: %s", response.data.task_id, images) |
|
|
return images |
|
|
|
|
|
|
|
|
def get_images_urls_from_response(response) -> Optional[str]: |
|
|
"""Returns the list of image urls from the Kling image generation task result. |
|
|
Will not raise an error if the response is not valid. If there is only one image, returns the url as a string. If there are multiple images, returns a list of urls. |
|
|
""" |
|
|
if response and is_valid_image_response(response): |
|
|
images = get_images_from_response(response) |
|
|
image_urls = [str(image.url) for image in images] |
|
|
return "\n".join(image_urls) |
|
|
else: |
|
|
return None |
|
|
|
|
|
|
|
|
async def video_result_to_node_output( |
|
|
video: KlingVideoResult, |
|
|
) -> tuple[VideoFromFile, str, str]: |
|
|
"""Converts a KlingVideoResult to a tuple of (VideoFromFile, str, str) to be used as a ComfyUI node output.""" |
|
|
return ( |
|
|
await download_url_to_video_output(str(video.url)), |
|
|
str(video.id), |
|
|
str(video.duration), |
|
|
) |
|
|
|
|
|
|
|
|
async def image_result_to_node_output( |
|
|
images: list[KlingImageResult], |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Converts a KlingImageResult to a tuple containing a [B, H, W, C] tensor. |
|
|
If multiple images are returned, they will be stacked along the batch dimension. |
|
|
""" |
|
|
if len(images) == 1: |
|
|
return await download_url_to_image_tensor(str(images[0].url)) |
|
|
else: |
|
|
return torch.cat([await download_url_to_image_tensor(str(image.url)) for image in images]) |
|
|
|
|
|
|
|
|
class KlingNodeBase(ComfyNodeABC): |
|
|
"""Base class for Kling nodes.""" |
|
|
|
|
|
FUNCTION = "api_call" |
|
|
CATEGORY = "api node/video/Kling" |
|
|
API_NODE = True |
|
|
|
|
|
|
|
|
class KlingCameraControls(KlingNodeBase): |
|
|
"""Kling Camera Controls Node""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(cls): |
|
|
return { |
|
|
"required": { |
|
|
"camera_control_type": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingCameraControl, |
|
|
"type", |
|
|
enum_type=KlingCameraControlType, |
|
|
), |
|
|
"horizontal_movement": get_camera_control_input_config( |
|
|
"Controls camera's movement along horizontal axis (x-axis). Negative indicates left, positive indicates right" |
|
|
), |
|
|
"vertical_movement": get_camera_control_input_config( |
|
|
"Controls camera's movement along vertical axis (y-axis). Negative indicates downward, positive indicates upward." |
|
|
), |
|
|
"pan": get_camera_control_input_config( |
|
|
"Controls camera's rotation in vertical plane (x-axis). Negative indicates downward rotation, positive indicates upward rotation.", |
|
|
default=0.5, |
|
|
), |
|
|
"tilt": get_camera_control_input_config( |
|
|
"Controls camera's rotation in horizontal plane (y-axis). Negative indicates left rotation, positive indicates right rotation.", |
|
|
), |
|
|
"roll": get_camera_control_input_config( |
|
|
"Controls camera's rolling amount (z-axis). Negative indicates counterclockwise, positive indicates clockwise.", |
|
|
), |
|
|
"zoom": get_camera_control_input_config( |
|
|
"Controls change in camera's focal length. Negative indicates narrower field of view, positive indicates wider field of view.", |
|
|
), |
|
|
} |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Allows specifying configuration options for Kling Camera Controls and motion control effects." |
|
|
RETURN_TYPES = ("CAMERA_CONTROL",) |
|
|
RETURN_NAMES = ("camera_control",) |
|
|
FUNCTION = "main" |
|
|
API_NODE = False |
|
|
|
|
|
@classmethod |
|
|
def VALIDATE_INPUTS( |
|
|
cls, |
|
|
horizontal_movement: float, |
|
|
vertical_movement: float, |
|
|
pan: float, |
|
|
tilt: float, |
|
|
roll: float, |
|
|
zoom: float, |
|
|
) -> bool | str: |
|
|
if not is_valid_camera_control_configs( |
|
|
[ |
|
|
horizontal_movement, |
|
|
vertical_movement, |
|
|
pan, |
|
|
tilt, |
|
|
roll, |
|
|
zoom, |
|
|
] |
|
|
): |
|
|
return "Invalid camera control configs: at least one of the values must be non-zero" |
|
|
return True |
|
|
|
|
|
def main( |
|
|
self, |
|
|
camera_control_type: str, |
|
|
horizontal_movement: float, |
|
|
vertical_movement: float, |
|
|
pan: float, |
|
|
tilt: float, |
|
|
roll: float, |
|
|
zoom: float, |
|
|
) -> tuple[KlingCameraControl]: |
|
|
return ( |
|
|
KlingCameraControl( |
|
|
type=KlingCameraControlType(camera_control_type), |
|
|
config=KlingCameraConfig( |
|
|
horizontal=horizontal_movement, |
|
|
vertical=vertical_movement, |
|
|
pan=pan, |
|
|
roll=roll, |
|
|
tilt=tilt, |
|
|
zoom=zoom, |
|
|
), |
|
|
), |
|
|
) |
|
|
|
|
|
|
|
|
class KlingTextToVideoNode(KlingNodeBase): |
|
|
"""Kling Text to Video Node""" |
|
|
|
|
|
@staticmethod |
|
|
def get_mode_string_mapping() -> dict[str, tuple[str, str, str]]: |
|
|
""" |
|
|
Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. |
|
|
Only includes config combos that support the `image_tail` request field. |
|
|
|
|
|
See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) |
|
|
""" |
|
|
return { |
|
|
"standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), |
|
|
"standard mode / 10s duration / kling-v1": ("std", "10", "kling-v1"), |
|
|
"pro mode / 5s duration / kling-v1": ("pro", "5", "kling-v1"), |
|
|
"pro mode / 10s duration / kling-v1": ("pro", "10", "kling-v1"), |
|
|
"standard mode / 5s duration / kling-v1-6": ("std", "5", "kling-v1-6"), |
|
|
"standard mode / 10s duration / kling-v1-6": ("std", "10", "kling-v1-6"), |
|
|
"pro mode / 5s duration / kling-v2-master": ("pro", "5", "kling-v2-master"), |
|
|
"pro mode / 10s duration / kling-v2-master": ("pro", "10", "kling-v2-master"), |
|
|
"standard mode / 5s duration / kling-v2-master": ("std", "5", "kling-v2-master"), |
|
|
"standard mode / 10s duration / kling-v2-master": ("std", "10", "kling-v2-master"), |
|
|
"pro mode / 5s duration / kling-v2-1-master": ("pro", "5", "kling-v2-1-master"), |
|
|
"pro mode / 10s duration / kling-v2-1-master": ("pro", "10", "kling-v2-1-master"), |
|
|
} |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
modes = list(KlingTextToVideoNode.get_mode_string_mapping().keys()) |
|
|
return { |
|
|
"required": { |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingText2VideoRequest, "prompt", multiline=True |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingText2VideoRequest, "negative_prompt", multiline=True |
|
|
), |
|
|
"cfg_scale": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingText2VideoRequest, |
|
|
"cfg_scale", |
|
|
default=1.0, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
), |
|
|
"aspect_ratio": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingText2VideoRequest, |
|
|
"aspect_ratio", |
|
|
enum_type=KlingVideoGenAspectRatio, |
|
|
), |
|
|
"mode": ( |
|
|
modes, |
|
|
{ |
|
|
"default": modes[4], |
|
|
"tooltip": "The configuration to use for the video generation following the format: mode / duration / model_name.", |
|
|
}, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("VIDEO", "STRING", "STRING") |
|
|
RETURN_NAMES = ("VIDEO", "video_id", "duration") |
|
|
DESCRIPTION = "Kling Text to Video Node" |
|
|
|
|
|
async def get_response( |
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None |
|
|
) -> KlingText2VideoResponse: |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_TEXT_TO_VIDEO}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=EmptyRequest, |
|
|
response_model=KlingText2VideoResponse, |
|
|
), |
|
|
result_url_extractor=get_video_url_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_T2V, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
cfg_scale: float, |
|
|
mode: str, |
|
|
aspect_ratio: str, |
|
|
camera_control: Optional[KlingCameraControl] = None, |
|
|
model_name: Optional[str] = None, |
|
|
duration: Optional[str] = None, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
) -> tuple[VideoFromFile, str, str]: |
|
|
validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) |
|
|
if model_name is None: |
|
|
mode, duration, model_name = self.get_mode_string_mapping()[mode] |
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_TEXT_TO_VIDEO, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingText2VideoRequest, |
|
|
response_model=KlingText2VideoResponse, |
|
|
), |
|
|
request=KlingText2VideoRequest( |
|
|
prompt=prompt if prompt else None, |
|
|
negative_prompt=negative_prompt if negative_prompt else None, |
|
|
duration=KlingVideoGenDuration(duration), |
|
|
mode=KlingVideoGenMode(mode), |
|
|
model_name=KlingVideoGenModelName(model_name), |
|
|
cfg_scale=cfg_scale, |
|
|
aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), |
|
|
camera_control=camera_control, |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
|
|
|
task_id = task_creation_response.data.task_id |
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_video_result_response(final_response) |
|
|
|
|
|
video = get_video_from_response(final_response) |
|
|
return await video_result_to_node_output(video) |
|
|
|
|
|
|
|
|
class KlingCameraControlT2VNode(KlingTextToVideoNode): |
|
|
""" |
|
|
Kling Text to Video Camera Control Node. This node is a text to video node, but it supports controlling the camera. |
|
|
Duration, mode, and model_name request fields are hard-coded because camera control is only supported in pro mode with the kling-v1-5 model at 5s duration as of 2025-05-02. |
|
|
""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingText2VideoRequest, "prompt", multiline=True |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingText2VideoRequest, |
|
|
"negative_prompt", |
|
|
multiline=True, |
|
|
), |
|
|
"cfg_scale": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingText2VideoRequest, |
|
|
"cfg_scale", |
|
|
default=0.75, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
), |
|
|
"aspect_ratio": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingText2VideoRequest, |
|
|
"aspect_ratio", |
|
|
enum_type=KlingVideoGenAspectRatio, |
|
|
), |
|
|
"camera_control": ( |
|
|
"CAMERA_CONTROL", |
|
|
{ |
|
|
"tooltip": "Can be created using the Kling Camera Controls node. Controls the camera movement and motion during the video generation.", |
|
|
}, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Transform text into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original text." |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
cfg_scale: float, |
|
|
aspect_ratio: str, |
|
|
camera_control: Optional[KlingCameraControl] = None, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
return await super().api_call( |
|
|
model_name=KlingVideoGenModelName.kling_v1, |
|
|
cfg_scale=cfg_scale, |
|
|
mode=KlingVideoGenMode.std, |
|
|
aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), |
|
|
duration=KlingVideoGenDuration.field_5, |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
camera_control=camera_control, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KlingImage2VideoNode(KlingNodeBase): |
|
|
"""Kling Image to Video Node""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"start_frame": model_field_to_node_input( |
|
|
IO.IMAGE, |
|
|
KlingImage2VideoRequest, |
|
|
"image", |
|
|
tooltip="The reference image used to generate the video.", |
|
|
), |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingImage2VideoRequest, "prompt", multiline=True |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingImage2VideoRequest, |
|
|
"negative_prompt", |
|
|
multiline=True, |
|
|
), |
|
|
"model_name": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImage2VideoRequest, |
|
|
"model_name", |
|
|
enum_type=KlingVideoGenModelName, |
|
|
), |
|
|
"cfg_scale": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingImage2VideoRequest, |
|
|
"cfg_scale", |
|
|
default=0.8, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
), |
|
|
"mode": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImage2VideoRequest, |
|
|
"mode", |
|
|
enum_type=KlingVideoGenMode, |
|
|
), |
|
|
"aspect_ratio": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImage2VideoRequest, |
|
|
"aspect_ratio", |
|
|
enum_type=KlingVideoGenAspectRatio, |
|
|
), |
|
|
"duration": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImage2VideoRequest, |
|
|
"duration", |
|
|
enum_type=KlingVideoGenDuration, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("VIDEO", "STRING", "STRING") |
|
|
RETURN_NAMES = ("VIDEO", "video_id", "duration") |
|
|
DESCRIPTION = "Kling Image to Video Node" |
|
|
|
|
|
async def get_response( |
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None |
|
|
) -> KlingImage2VideoResponse: |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_IMAGE_TO_VIDEO}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=KlingImage2VideoRequest, |
|
|
response_model=KlingImage2VideoResponse, |
|
|
), |
|
|
result_url_extractor=get_video_url_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_I2V, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
start_frame: torch.Tensor, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
model_name: str, |
|
|
cfg_scale: float, |
|
|
mode: str, |
|
|
aspect_ratio: str, |
|
|
duration: str, |
|
|
camera_control: Optional[KlingCameraControl] = None, |
|
|
end_frame: Optional[torch.Tensor] = None, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
) -> tuple[VideoFromFile]: |
|
|
validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_I2V) |
|
|
validate_input_image(start_frame) |
|
|
|
|
|
if camera_control is not None: |
|
|
|
|
|
camera_control.type = KlingCameraControlType.simple |
|
|
|
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_IMAGE_TO_VIDEO, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingImage2VideoRequest, |
|
|
response_model=KlingImage2VideoResponse, |
|
|
), |
|
|
request=KlingImage2VideoRequest( |
|
|
model_name=KlingVideoGenModelName(model_name), |
|
|
image=tensor_to_base64_string(start_frame), |
|
|
image_tail=( |
|
|
tensor_to_base64_string(end_frame) |
|
|
if end_frame is not None |
|
|
else None |
|
|
), |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt if negative_prompt else None, |
|
|
cfg_scale=cfg_scale, |
|
|
mode=KlingVideoGenMode(mode), |
|
|
duration=KlingVideoGenDuration(duration), |
|
|
camera_control=camera_control, |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
task_id = task_creation_response.data.task_id |
|
|
|
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_video_result_response(final_response) |
|
|
|
|
|
video = get_video_from_response(final_response) |
|
|
return await video_result_to_node_output(video) |
|
|
|
|
|
|
|
|
class KlingCameraControlI2VNode(KlingImage2VideoNode): |
|
|
""" |
|
|
Kling Image to Video Camera Control Node. This node is a image to video node, but it supports controlling the camera. |
|
|
Duration, mode, and model_name request fields are hard-coded because camera control is only supported in pro mode with the kling-v1-5 model at 5s duration as of 2025-05-02. |
|
|
""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"start_frame": model_field_to_node_input( |
|
|
IO.IMAGE, KlingImage2VideoRequest, "image" |
|
|
), |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingImage2VideoRequest, "prompt", multiline=True |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingImage2VideoRequest, |
|
|
"negative_prompt", |
|
|
multiline=True, |
|
|
), |
|
|
"cfg_scale": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingImage2VideoRequest, |
|
|
"cfg_scale", |
|
|
default=0.75, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
), |
|
|
"aspect_ratio": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImage2VideoRequest, |
|
|
"aspect_ratio", |
|
|
enum_type=KlingVideoGenAspectRatio, |
|
|
), |
|
|
"camera_control": ( |
|
|
"CAMERA_CONTROL", |
|
|
{ |
|
|
"tooltip": "Can be created using the Kling Camera Controls node. Controls the camera movement and motion during the video generation.", |
|
|
}, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Transform still images into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original image." |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
start_frame: torch.Tensor, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
cfg_scale: float, |
|
|
aspect_ratio: str, |
|
|
camera_control: KlingCameraControl, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
return await super().api_call( |
|
|
model_name=KlingVideoGenModelName.kling_v1_5, |
|
|
start_frame=start_frame, |
|
|
cfg_scale=cfg_scale, |
|
|
mode=KlingVideoGenMode.pro, |
|
|
aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), |
|
|
duration=KlingVideoGenDuration.field_5, |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
camera_control=camera_control, |
|
|
unique_id=unique_id, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KlingStartEndFrameNode(KlingImage2VideoNode): |
|
|
""" |
|
|
Kling First Last Frame Node. This node allows creation of a video from a first and last frame. It calls the normal image to video endpoint, but only allows the subset of input options that support the `image_tail` request field. |
|
|
""" |
|
|
|
|
|
@staticmethod |
|
|
def get_mode_string_mapping() -> dict[str, tuple[str, str, str]]: |
|
|
""" |
|
|
Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. |
|
|
Only includes config combos that support the `image_tail` request field. |
|
|
|
|
|
See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) |
|
|
""" |
|
|
return { |
|
|
"standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), |
|
|
"pro mode / 5s duration / kling-v1": ("pro", "5", "kling-v1"), |
|
|
"pro mode / 5s duration / kling-v1-5": ("pro", "5", "kling-v1-5"), |
|
|
"pro mode / 10s duration / kling-v1-5": ("pro", "10", "kling-v1-5"), |
|
|
"pro mode / 5s duration / kling-v1-6": ("pro", "5", "kling-v1-6"), |
|
|
"pro mode / 10s duration / kling-v1-6": ("pro", "10", "kling-v1-6"), |
|
|
} |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
modes = list(KlingStartEndFrameNode.get_mode_string_mapping().keys()) |
|
|
return { |
|
|
"required": { |
|
|
"start_frame": model_field_to_node_input( |
|
|
IO.IMAGE, KlingImage2VideoRequest, "image" |
|
|
), |
|
|
"end_frame": model_field_to_node_input( |
|
|
IO.IMAGE, KlingImage2VideoRequest, "image_tail" |
|
|
), |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingImage2VideoRequest, "prompt", multiline=True |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingImage2VideoRequest, |
|
|
"negative_prompt", |
|
|
multiline=True, |
|
|
), |
|
|
"cfg_scale": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingImage2VideoRequest, |
|
|
"cfg_scale", |
|
|
default=0.5, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
), |
|
|
"aspect_ratio": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImage2VideoRequest, |
|
|
"aspect_ratio", |
|
|
enum_type=KlingVideoGenAspectRatio, |
|
|
), |
|
|
"mode": ( |
|
|
modes, |
|
|
{ |
|
|
"default": modes[2], |
|
|
"tooltip": "The configuration to use for the video generation following the format: mode / duration / model_name.", |
|
|
}, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Generate a video sequence that transitions between your provided start and end images. The node creates all frames in between, producing a smooth transformation from the first frame to the last." |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
start_frame: torch.Tensor, |
|
|
end_frame: torch.Tensor, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
cfg_scale: float, |
|
|
aspect_ratio: str, |
|
|
mode: str, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
mode, duration, model_name = KlingStartEndFrameNode.get_mode_string_mapping()[ |
|
|
mode |
|
|
] |
|
|
return await super().api_call( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
model_name=model_name, |
|
|
start_frame=start_frame, |
|
|
cfg_scale=cfg_scale, |
|
|
mode=mode, |
|
|
aspect_ratio=aspect_ratio, |
|
|
duration=duration, |
|
|
end_frame=end_frame, |
|
|
unique_id=unique_id, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KlingVideoExtendNode(KlingNodeBase): |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, KlingVideoExtendRequest, "prompt", multiline=True |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingVideoExtendRequest, |
|
|
"negative_prompt", |
|
|
multiline=True, |
|
|
), |
|
|
"cfg_scale": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingVideoExtendRequest, |
|
|
"cfg_scale", |
|
|
default=0.5, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
), |
|
|
"video_id": model_field_to_node_input( |
|
|
IO.STRING, KlingVideoExtendRequest, "video_id", forceInput=True |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("VIDEO", "STRING", "STRING") |
|
|
RETURN_NAMES = ("VIDEO", "video_id", "duration") |
|
|
DESCRIPTION = "Kling Video Extend Node. Extend videos made by other Kling nodes. The video_id is created by using other Kling Nodes." |
|
|
|
|
|
async def get_response( |
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None |
|
|
) -> KlingVideoExtendResponse: |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_VIDEO_EXTEND}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=EmptyRequest, |
|
|
response_model=KlingVideoExtendResponse, |
|
|
), |
|
|
result_url_extractor=get_video_url_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_VIDEO_EXTEND, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
cfg_scale: float, |
|
|
video_id: str, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
) -> tuple[VideoFromFile, str, str]: |
|
|
validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) |
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_VIDEO_EXTEND, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingVideoExtendRequest, |
|
|
response_model=KlingVideoExtendResponse, |
|
|
), |
|
|
request=KlingVideoExtendRequest( |
|
|
prompt=prompt if prompt else None, |
|
|
negative_prompt=negative_prompt if negative_prompt else None, |
|
|
cfg_scale=cfg_scale, |
|
|
video_id=video_id, |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
task_id = task_creation_response.data.task_id |
|
|
|
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_video_result_response(final_response) |
|
|
|
|
|
video = get_video_from_response(final_response) |
|
|
return await video_result_to_node_output(video) |
|
|
|
|
|
|
|
|
class KlingVideoEffectsBase(KlingNodeBase): |
|
|
"""Kling Video Effects Base""" |
|
|
|
|
|
RETURN_TYPES = ("VIDEO", "STRING", "STRING") |
|
|
RETURN_NAMES = ("VIDEO", "video_id", "duration") |
|
|
|
|
|
async def get_response( |
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None |
|
|
) -> KlingVideoEffectsResponse: |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_VIDEO_EFFECTS}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=EmptyRequest, |
|
|
response_model=KlingVideoEffectsResponse, |
|
|
), |
|
|
result_url_extractor=get_video_url_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_VIDEO_EFFECTS, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
dual_character: bool, |
|
|
effect_scene: KlingDualCharacterEffectsScene | KlingSingleImageEffectsScene, |
|
|
model_name: str, |
|
|
duration: KlingVideoGenDuration, |
|
|
image_1: torch.Tensor, |
|
|
image_2: Optional[torch.Tensor] = None, |
|
|
mode: Optional[KlingVideoGenMode] = None, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
if dual_character: |
|
|
request_input_field = KlingDualCharacterEffectInput( |
|
|
model_name=model_name, |
|
|
mode=mode, |
|
|
images=[ |
|
|
tensor_to_base64_string(image_1), |
|
|
tensor_to_base64_string(image_2), |
|
|
], |
|
|
duration=duration, |
|
|
) |
|
|
else: |
|
|
request_input_field = KlingSingleImageEffectInput( |
|
|
model_name=model_name, |
|
|
image=tensor_to_base64_string(image_1), |
|
|
duration=duration, |
|
|
) |
|
|
|
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_VIDEO_EFFECTS, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingVideoEffectsRequest, |
|
|
response_model=KlingVideoEffectsResponse, |
|
|
), |
|
|
request=KlingVideoEffectsRequest( |
|
|
effect_scene=effect_scene, |
|
|
input=request_input_field, |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
task_id = task_creation_response.data.task_id |
|
|
|
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_video_result_response(final_response) |
|
|
|
|
|
video = get_video_from_response(final_response) |
|
|
return await video_result_to_node_output(video) |
|
|
|
|
|
|
|
|
class KlingDualCharacterVideoEffectNode(KlingVideoEffectsBase): |
|
|
"""Kling Dual Character Video Effect Node""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"image_left": (IO.IMAGE, {"tooltip": "Left side image"}), |
|
|
"image_right": (IO.IMAGE, {"tooltip": "Right side image"}), |
|
|
"effect_scene": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingVideoEffectsRequest, |
|
|
"effect_scene", |
|
|
enum_type=KlingDualCharacterEffectsScene, |
|
|
), |
|
|
"model_name": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingDualCharacterEffectInput, |
|
|
"model_name", |
|
|
enum_type=KlingCharacterEffectModelName, |
|
|
), |
|
|
"mode": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingDualCharacterEffectInput, |
|
|
"mode", |
|
|
enum_type=KlingVideoGenMode, |
|
|
), |
|
|
"duration": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingDualCharacterEffectInput, |
|
|
"duration", |
|
|
enum_type=KlingVideoGenDuration, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Achieve different special effects when generating a video based on the effect_scene. First image will be positioned on left side, second on right side of the composite." |
|
|
RETURN_TYPES = ("VIDEO", "STRING") |
|
|
RETURN_NAMES = ("VIDEO", "duration") |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
image_left: torch.Tensor, |
|
|
image_right: torch.Tensor, |
|
|
effect_scene: KlingDualCharacterEffectsScene, |
|
|
model_name: KlingCharacterEffectModelName, |
|
|
mode: KlingVideoGenMode, |
|
|
duration: KlingVideoGenDuration, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
video, _, duration = await super().api_call( |
|
|
dual_character=True, |
|
|
effect_scene=effect_scene, |
|
|
model_name=model_name, |
|
|
mode=mode, |
|
|
duration=duration, |
|
|
image_1=image_left, |
|
|
image_2=image_right, |
|
|
unique_id=unique_id, |
|
|
**kwargs, |
|
|
) |
|
|
return video, duration |
|
|
|
|
|
|
|
|
class KlingSingleImageVideoEffectNode(KlingVideoEffectsBase): |
|
|
"""Kling Single Image Video Effect Node""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"image": ( |
|
|
IO.IMAGE, |
|
|
{ |
|
|
"tooltip": " Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1" |
|
|
}, |
|
|
), |
|
|
"effect_scene": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingVideoEffectsRequest, |
|
|
"effect_scene", |
|
|
enum_type=KlingSingleImageEffectsScene, |
|
|
), |
|
|
"model_name": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingSingleImageEffectInput, |
|
|
"model_name", |
|
|
enum_type=KlingSingleImageEffectModelName, |
|
|
), |
|
|
"duration": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingSingleImageEffectInput, |
|
|
"duration", |
|
|
enum_type=KlingVideoGenDuration, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Achieve different special effects when generating a video based on the effect_scene." |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
image: torch.Tensor, |
|
|
effect_scene: KlingSingleImageEffectsScene, |
|
|
model_name: KlingSingleImageEffectModelName, |
|
|
duration: KlingVideoGenDuration, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
return await super().api_call( |
|
|
dual_character=False, |
|
|
effect_scene=effect_scene, |
|
|
model_name=model_name, |
|
|
duration=duration, |
|
|
image_1=image, |
|
|
unique_id=unique_id, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KlingLipSyncBase(KlingNodeBase): |
|
|
"""Kling Lip Sync Base""" |
|
|
|
|
|
RETURN_TYPES = ("VIDEO", "STRING", "STRING") |
|
|
RETURN_NAMES = ("VIDEO", "video_id", "duration") |
|
|
|
|
|
def validate_lip_sync_video(self, video: VideoInput): |
|
|
""" |
|
|
Validates the input video adheres to the expectations of the Kling Lip Sync API: |
|
|
- Video length does not exceed 10s and is not shorter than 2s |
|
|
- Length and width dimensions should both be between 720px and 1920px |
|
|
|
|
|
See: https://app.klingai.com/global/dev/document-api/apiReference/model/videoTolip |
|
|
""" |
|
|
validate_video_dimensions(video, 720, 1920) |
|
|
validate_video_duration(video, 2, 10) |
|
|
|
|
|
def validate_text(self, text: str): |
|
|
if not text: |
|
|
raise ValueError("Text is required") |
|
|
if len(text) > MAX_PROMPT_LENGTH_LIP_SYNC: |
|
|
raise ValueError( |
|
|
f"Text is too long. Maximum length is {MAX_PROMPT_LENGTH_LIP_SYNC} characters." |
|
|
) |
|
|
|
|
|
async def get_response( |
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None |
|
|
) -> KlingLipSyncResponse: |
|
|
"""Polls the Kling API endpoint until the task reaches a terminal state.""" |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_LIP_SYNC}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=EmptyRequest, |
|
|
response_model=KlingLipSyncResponse, |
|
|
), |
|
|
result_url_extractor=get_video_url_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_LIP_SYNC, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
video: VideoInput, |
|
|
audio: Optional[AudioInput] = None, |
|
|
voice_language: Optional[str] = None, |
|
|
mode: Optional[str] = None, |
|
|
text: Optional[str] = None, |
|
|
voice_speed: Optional[float] = None, |
|
|
voice_id: Optional[str] = None, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
) -> tuple[VideoFromFile, str, str]: |
|
|
if text: |
|
|
self.validate_text(text) |
|
|
self.validate_lip_sync_video(video) |
|
|
|
|
|
|
|
|
video_url = await upload_video_to_comfyapi(video, auth_kwargs=kwargs) |
|
|
logging.info("Uploaded video to Comfy API. URL: %s", video_url) |
|
|
|
|
|
|
|
|
if audio: |
|
|
audio_url = await upload_audio_to_comfyapi(audio, auth_kwargs=kwargs) |
|
|
logging.info("Uploaded audio to Comfy API. URL: %s", audio_url) |
|
|
else: |
|
|
audio_url = None |
|
|
|
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_LIP_SYNC, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingLipSyncRequest, |
|
|
response_model=KlingLipSyncResponse, |
|
|
), |
|
|
request=KlingLipSyncRequest( |
|
|
input=KlingLipSyncInputObject( |
|
|
video_url=video_url, |
|
|
mode=mode, |
|
|
text=text, |
|
|
voice_language=voice_language, |
|
|
voice_speed=voice_speed, |
|
|
audio_type="url", |
|
|
audio_url=audio_url, |
|
|
voice_id=voice_id, |
|
|
), |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
task_id = task_creation_response.data.task_id |
|
|
|
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_video_result_response(final_response) |
|
|
|
|
|
video = get_video_from_response(final_response) |
|
|
return await video_result_to_node_output(video) |
|
|
|
|
|
|
|
|
class KlingLipSyncAudioToVideoNode(KlingLipSyncBase): |
|
|
"""Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file.""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"video": (IO.VIDEO, {}), |
|
|
"audio": (IO.AUDIO, {}), |
|
|
"voice_language": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingLipSyncInputObject, |
|
|
"voice_language", |
|
|
enum_type=KlingLipSyncVoiceLanguage, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file. When using, ensure that the audio contains clearly distinguishable vocals and that the video contains a distinct face. The audio file should not be larger than 5MB. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length." |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
video: VideoInput, |
|
|
audio: AudioInput, |
|
|
voice_language: str, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
return await super().api_call( |
|
|
video=video, |
|
|
audio=audio, |
|
|
voice_language=voice_language, |
|
|
mode="audio2video", |
|
|
unique_id=unique_id, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KlingLipSyncTextToVideoNode(KlingLipSyncBase): |
|
|
"""Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt.""" |
|
|
|
|
|
@staticmethod |
|
|
def get_voice_config() -> dict[str, tuple[str, str]]: |
|
|
return { |
|
|
|
|
|
"Melody": ("girlfriend_4_speech02", "en"), |
|
|
"Sunny": ("genshin_vindi2", "en"), |
|
|
"Sage": ("zhinen_xuesheng", "en"), |
|
|
"Ace": ("AOT", "en"), |
|
|
"Blossom": ("ai_shatang", "en"), |
|
|
"Peppy": ("genshin_klee2", "en"), |
|
|
"Dove": ("genshin_kirara", "en"), |
|
|
"Shine": ("ai_kaiya", "en"), |
|
|
"Anchor": ("oversea_male1", "en"), |
|
|
"Lyric": ("ai_chenjiahao_712", "en"), |
|
|
"Tender": ("chat1_female_new-3", "en"), |
|
|
"Siren": ("chat_0407_5-1", "en"), |
|
|
"Zippy": ("cartoon-boy-07", "en"), |
|
|
"Bud": ("uk_boy1", "en"), |
|
|
"Sprite": ("cartoon-girl-01", "en"), |
|
|
"Candy": ("PeppaPig_platform", "en"), |
|
|
"Beacon": ("ai_huangzhong_712", "en"), |
|
|
"Rock": ("ai_huangyaoshi_712", "en"), |
|
|
"Titan": ("ai_laoguowang_712", "en"), |
|
|
"Grace": ("chengshu_jiejie", "en"), |
|
|
"Helen": ("you_pingjing", "en"), |
|
|
"Lore": ("calm_story1", "en"), |
|
|
"Crag": ("uk_man2", "en"), |
|
|
"Prattle": ("laopopo_speech02", "en"), |
|
|
"Hearth": ("heainainai_speech02", "en"), |
|
|
"The Reader": ("reader_en_m-v1", "en"), |
|
|
"Commercial Lady": ("commercial_lady_en_f-v1", "en"), |
|
|
|
|
|
"阳光少年": ("genshin_vindi2", "zh"), |
|
|
"懂事小弟": ("zhinen_xuesheng", "zh"), |
|
|
"运动少年": ("tiyuxi_xuedi", "zh"), |
|
|
"青春少女": ("ai_shatang", "zh"), |
|
|
"温柔小妹": ("genshin_klee2", "zh"), |
|
|
"元气少女": ("genshin_kirara", "zh"), |
|
|
"阳光男生": ("ai_kaiya", "zh"), |
|
|
"幽默小哥": ("tiexin_nanyou", "zh"), |
|
|
"文艺小哥": ("ai_chenjiahao_712", "zh"), |
|
|
"甜美邻家": ("girlfriend_1_speech02", "zh"), |
|
|
"温柔姐姐": ("chat1_female_new-3", "zh"), |
|
|
"职场女青": ("girlfriend_2_speech02", "zh"), |
|
|
"活泼男童": ("cartoon-boy-07", "zh"), |
|
|
"俏皮女童": ("cartoon-girl-01", "zh"), |
|
|
"稳重老爸": ("ai_huangyaoshi_712", "zh"), |
|
|
"温柔妈妈": ("you_pingjing", "zh"), |
|
|
"严肃上司": ("ai_laoguowang_712", "zh"), |
|
|
"优雅贵妇": ("chengshu_jiejie", "zh"), |
|
|
"慈祥爷爷": ("zhuxi_speech02", "zh"), |
|
|
"唠叨爷爷": ("uk_oldman3", "zh"), |
|
|
"唠叨奶奶": ("laopopo_speech02", "zh"), |
|
|
"和蔼奶奶": ("heainainai_speech02", "zh"), |
|
|
"东北老铁": ("dongbeilaotie_speech02", "zh"), |
|
|
"重庆小伙": ("chongqingxiaohuo_speech02", "zh"), |
|
|
"四川妹子": ("chuanmeizi_speech02", "zh"), |
|
|
"潮汕大叔": ("chaoshandashu_speech02", "zh"), |
|
|
"台湾男生": ("ai_taiwan_man2_speech02", "zh"), |
|
|
"西安掌柜": ("xianzhanggui_speech02", "zh"), |
|
|
"天津姐姐": ("tianjinjiejie_speech02", "zh"), |
|
|
"新闻播报男": ("diyinnansang_DB_CN_M_04-v2", "zh"), |
|
|
"译制片男": ("yizhipiannan-v1", "zh"), |
|
|
"撒娇女友": ("tianmeixuemei-v1", "zh"), |
|
|
"刀片烟嗓": ("daopianyansang-v1", "zh"), |
|
|
"乖巧正太": ("mengwa-v1", "zh"), |
|
|
} |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
voice_options = list(s.get_voice_config().keys()) |
|
|
return { |
|
|
"required": { |
|
|
"video": (IO.VIDEO, {}), |
|
|
"text": model_field_to_node_input( |
|
|
IO.STRING, KlingLipSyncInputObject, "text", multiline=True |
|
|
), |
|
|
"voice": (voice_options, {"default": voice_options[0]}), |
|
|
"voice_speed": model_field_to_node_input( |
|
|
IO.FLOAT, KlingLipSyncInputObject, "voice_speed", slider=True |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length." |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
video: VideoInput, |
|
|
text: str, |
|
|
voice: str, |
|
|
voice_speed: float, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
voice_id, voice_language = KlingLipSyncTextToVideoNode.get_voice_config()[voice] |
|
|
return await super().api_call( |
|
|
video=video, |
|
|
text=text, |
|
|
voice_language=voice_language, |
|
|
voice_id=voice_id, |
|
|
voice_speed=voice_speed, |
|
|
mode="text2video", |
|
|
unique_id=unique_id, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KlingImageGenerationBase(KlingNodeBase): |
|
|
"""Kling Image Generation Base Node.""" |
|
|
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
|
CATEGORY = "api node/image/Kling" |
|
|
|
|
|
def validate_prompt(self, prompt: str, negative_prompt: Optional[str] = None): |
|
|
if not prompt or len(prompt) > MAX_PROMPT_LENGTH_IMAGE_GEN: |
|
|
raise ValueError( |
|
|
f"Prompt must be less than {MAX_PROMPT_LENGTH_IMAGE_GEN} characters" |
|
|
) |
|
|
if negative_prompt and len(negative_prompt) > MAX_PROMPT_LENGTH_IMAGE_GEN: |
|
|
raise ValueError( |
|
|
f"Negative prompt must be less than {MAX_PROMPT_LENGTH_IMAGE_GEN} characters" |
|
|
) |
|
|
|
|
|
|
|
|
class KlingVirtualTryOnNode(KlingImageGenerationBase): |
|
|
"""Kling Virtual Try On Node.""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"human_image": (IO.IMAGE, {}), |
|
|
"cloth_image": (IO.IMAGE, {}), |
|
|
"model_name": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingVirtualTryOnRequest, |
|
|
"model_name", |
|
|
enum_type=KlingVirtualTryOnModelName, |
|
|
), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Kling Virtual Try On Node. Input a human image and a cloth image to try on the cloth on the human. You can merge multiple clothing item pictures into one image with a white background." |
|
|
|
|
|
async def get_response( |
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None |
|
|
) -> KlingVirtualTryOnResponse: |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_VIRTUAL_TRY_ON}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=EmptyRequest, |
|
|
response_model=KlingVirtualTryOnResponse, |
|
|
), |
|
|
result_url_extractor=get_images_urls_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_VIRTUAL_TRY_ON, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
human_image: torch.Tensor, |
|
|
cloth_image: torch.Tensor, |
|
|
model_name: KlingVirtualTryOnModelName, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_VIRTUAL_TRY_ON, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingVirtualTryOnRequest, |
|
|
response_model=KlingVirtualTryOnResponse, |
|
|
), |
|
|
request=KlingVirtualTryOnRequest( |
|
|
human_image=tensor_to_base64_string(human_image), |
|
|
cloth_image=tensor_to_base64_string(cloth_image), |
|
|
model_name=model_name, |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
task_id = task_creation_response.data.task_id |
|
|
|
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_image_result_response(final_response) |
|
|
|
|
|
images = get_images_from_response(final_response) |
|
|
return (await image_result_to_node_output(images),) |
|
|
|
|
|
|
|
|
class KlingImageGenerationNode(KlingImageGenerationBase): |
|
|
"""Kling Image Generation Node. Generate an image from a text prompt with an optional reference image.""" |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingImageGenerationsRequest, |
|
|
"prompt", |
|
|
multiline=True, |
|
|
max_length=MAX_PROMPT_LENGTH_IMAGE_GEN, |
|
|
), |
|
|
"negative_prompt": model_field_to_node_input( |
|
|
IO.STRING, |
|
|
KlingImageGenerationsRequest, |
|
|
"negative_prompt", |
|
|
multiline=True, |
|
|
), |
|
|
"image_type": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImageGenerationsRequest, |
|
|
"image_reference", |
|
|
enum_type=KlingImageGenImageReferenceType, |
|
|
), |
|
|
"image_fidelity": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingImageGenerationsRequest, |
|
|
"image_fidelity", |
|
|
slider=True, |
|
|
step=0.01, |
|
|
), |
|
|
"human_fidelity": model_field_to_node_input( |
|
|
IO.FLOAT, |
|
|
KlingImageGenerationsRequest, |
|
|
"human_fidelity", |
|
|
slider=True, |
|
|
step=0.01, |
|
|
), |
|
|
"model_name": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImageGenerationsRequest, |
|
|
"model_name", |
|
|
enum_type=KlingImageGenModelName, |
|
|
), |
|
|
"aspect_ratio": model_field_to_node_input( |
|
|
IO.COMBO, |
|
|
KlingImageGenerationsRequest, |
|
|
"aspect_ratio", |
|
|
enum_type=KlingImageGenAspectRatio, |
|
|
), |
|
|
"n": model_field_to_node_input( |
|
|
IO.INT, |
|
|
KlingImageGenerationsRequest, |
|
|
"n", |
|
|
), |
|
|
}, |
|
|
"optional": { |
|
|
"image": (IO.IMAGE, {}), |
|
|
}, |
|
|
"hidden": { |
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG", |
|
|
"comfy_api_key": "API_KEY_COMFY_ORG", |
|
|
"unique_id": "UNIQUE_ID", |
|
|
}, |
|
|
} |
|
|
|
|
|
DESCRIPTION = "Kling Image Generation Node. Generate an image from a text prompt with an optional reference image." |
|
|
|
|
|
async def get_response( |
|
|
self, |
|
|
task_id: str, |
|
|
auth_kwargs: Optional[dict[str, str]], |
|
|
node_id: Optional[str] = None, |
|
|
) -> KlingImageGenerationsResponse: |
|
|
return await poll_until_finished( |
|
|
auth_kwargs, |
|
|
ApiEndpoint( |
|
|
path=f"{PATH_IMAGE_GENERATIONS}/{task_id}", |
|
|
method=HttpMethod.GET, |
|
|
request_model=EmptyRequest, |
|
|
response_model=KlingImageGenerationsResponse, |
|
|
), |
|
|
result_url_extractor=get_images_urls_from_response, |
|
|
estimated_duration=AVERAGE_DURATION_IMAGE_GEN, |
|
|
node_id=node_id, |
|
|
) |
|
|
|
|
|
async def api_call( |
|
|
self, |
|
|
model_name: KlingImageGenModelName, |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
image_type: KlingImageGenImageReferenceType, |
|
|
image_fidelity: float, |
|
|
human_fidelity: float, |
|
|
n: int, |
|
|
aspect_ratio: KlingImageGenAspectRatio, |
|
|
image: Optional[torch.Tensor] = None, |
|
|
unique_id: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
self.validate_prompt(prompt, negative_prompt) |
|
|
|
|
|
if image is None: |
|
|
image_type = None |
|
|
elif model_name == KlingImageGenModelName.kling_v1: |
|
|
raise ValueError(f"The model {KlingImageGenModelName.kling_v1.value} does not support reference images.") |
|
|
else: |
|
|
image = tensor_to_base64_string(image) |
|
|
|
|
|
initial_operation = SynchronousOperation( |
|
|
endpoint=ApiEndpoint( |
|
|
path=PATH_IMAGE_GENERATIONS, |
|
|
method=HttpMethod.POST, |
|
|
request_model=KlingImageGenerationsRequest, |
|
|
response_model=KlingImageGenerationsResponse, |
|
|
), |
|
|
request=KlingImageGenerationsRequest( |
|
|
model_name=model_name, |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
image=image, |
|
|
image_reference=image_type, |
|
|
image_fidelity=image_fidelity, |
|
|
human_fidelity=human_fidelity, |
|
|
n=n, |
|
|
aspect_ratio=aspect_ratio, |
|
|
), |
|
|
auth_kwargs=kwargs, |
|
|
) |
|
|
|
|
|
task_creation_response = await initial_operation.execute() |
|
|
validate_task_creation_response(task_creation_response) |
|
|
task_id = task_creation_response.data.task_id |
|
|
|
|
|
final_response = await self.get_response( |
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id |
|
|
) |
|
|
validate_image_result_response(final_response) |
|
|
|
|
|
images = get_images_from_response(final_response) |
|
|
return (await image_result_to_node_output(images),) |
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
|
"KlingCameraControls": KlingCameraControls, |
|
|
"KlingTextToVideoNode": KlingTextToVideoNode, |
|
|
"KlingImage2VideoNode": KlingImage2VideoNode, |
|
|
"KlingCameraControlI2VNode": KlingCameraControlI2VNode, |
|
|
"KlingCameraControlT2VNode": KlingCameraControlT2VNode, |
|
|
"KlingStartEndFrameNode": KlingStartEndFrameNode, |
|
|
"KlingVideoExtendNode": KlingVideoExtendNode, |
|
|
"KlingLipSyncAudioToVideoNode": KlingLipSyncAudioToVideoNode, |
|
|
"KlingLipSyncTextToVideoNode": KlingLipSyncTextToVideoNode, |
|
|
"KlingVirtualTryOnNode": KlingVirtualTryOnNode, |
|
|
"KlingImageGenerationNode": KlingImageGenerationNode, |
|
|
"KlingSingleImageVideoEffectNode": KlingSingleImageVideoEffectNode, |
|
|
"KlingDualCharacterVideoEffectNode": KlingDualCharacterVideoEffectNode, |
|
|
} |
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
|
"KlingCameraControls": "Kling Camera Controls", |
|
|
"KlingTextToVideoNode": "Kling Text to Video", |
|
|
"KlingImage2VideoNode": "Kling Image to Video", |
|
|
"KlingCameraControlI2VNode": "Kling Image to Video (Camera Control)", |
|
|
"KlingCameraControlT2VNode": "Kling Text to Video (Camera Control)", |
|
|
"KlingStartEndFrameNode": "Kling Start-End Frame to Video", |
|
|
"KlingVideoExtendNode": "Kling Video Extend", |
|
|
"KlingLipSyncAudioToVideoNode": "Kling Lip Sync Video with Audio", |
|
|
"KlingLipSyncTextToVideoNode": "Kling Lip Sync Video with Text", |
|
|
"KlingVirtualTryOnNode": "Kling Virtual Try On", |
|
|
"KlingImageGenerationNode": "Kling Image Generation", |
|
|
"KlingSingleImageVideoEffectNode": "Kling Video Effects", |
|
|
"KlingDualCharacterVideoEffectNode": "Kling Dual Character Video Effects", |
|
|
} |
|
|
|