|
import logging |
|
from typing import Optional |
|
|
|
import torch |
|
import comfy.model_management |
|
from .base import WeightAdapterBase, weight_decompose |
|
|
|
|
|
class BOFTAdapter(WeightAdapterBase): |
|
name = "boft" |
|
|
|
def __init__(self, loaded_keys, weights): |
|
self.loaded_keys = loaded_keys |
|
self.weights = weights |
|
|
|
@classmethod |
|
def load( |
|
cls, |
|
x: str, |
|
lora: dict[str, torch.Tensor], |
|
alpha: float, |
|
dora_scale: torch.Tensor, |
|
loaded_keys: set[str] = None, |
|
) -> Optional["BOFTAdapter"]: |
|
if loaded_keys is None: |
|
loaded_keys = set() |
|
blocks_name = "{}.oft_blocks".format(x) |
|
rescale_name = "{}.rescale".format(x) |
|
|
|
blocks = None |
|
if blocks_name in lora.keys(): |
|
blocks = lora[blocks_name] |
|
if blocks.ndim == 4: |
|
loaded_keys.add(blocks_name) |
|
else: |
|
blocks = None |
|
if blocks is None: |
|
return None |
|
|
|
rescale = None |
|
if rescale_name in lora.keys(): |
|
rescale = lora[rescale_name] |
|
loaded_keys.add(rescale_name) |
|
|
|
weights = (blocks, rescale, alpha, dora_scale) |
|
return cls(loaded_keys, weights) |
|
|
|
def calculate_weight( |
|
self, |
|
weight, |
|
key, |
|
strength, |
|
strength_model, |
|
offset, |
|
function, |
|
intermediate_dtype=torch.float32, |
|
original_weight=None, |
|
): |
|
v = self.weights |
|
blocks = v[0] |
|
rescale = v[1] |
|
alpha = v[2] |
|
dora_scale = v[3] |
|
|
|
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype) |
|
if rescale is not None: |
|
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype) |
|
|
|
boft_m, block_num, boft_b, *_ = blocks.shape |
|
|
|
try: |
|
|
|
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype) |
|
|
|
q = blocks - blocks.transpose(-1, -2) |
|
normed_q = q |
|
if alpha > 0: |
|
q_norm = torch.norm(q) + 1e-8 |
|
if q_norm > alpha: |
|
normed_q = q * alpha / q_norm |
|
|
|
r = (I + normed_q) @ (I - normed_q).float().inverse() |
|
r = r.to(weight) |
|
inp = org = weight |
|
|
|
r_b = boft_b//2 |
|
for i in range(boft_m): |
|
bi = r[i] |
|
g = 2 |
|
k = 2**i * r_b |
|
if strength != 1: |
|
bi = bi * strength + (1-strength) * I |
|
inp = ( |
|
inp.unflatten(0, (-1, g, k)) |
|
.transpose(1, 2) |
|
.flatten(0, 2) |
|
.unflatten(0, (-1, boft_b)) |
|
) |
|
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp) |
|
inp = ( |
|
inp.flatten(0, 1).unflatten(0, (-1, k, g)).transpose(1, 2).flatten(0, 2) |
|
) |
|
|
|
if rescale is not None: |
|
inp = inp * rescale |
|
|
|
lora_diff = inp - org |
|
lora_diff = comfy.model_management.cast_to_device(lora_diff, weight.device, intermediate_dtype) |
|
if dora_scale is not None: |
|
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) |
|
else: |
|
weight += function((strength * lora_diff).type(weight.dtype)) |
|
except Exception as e: |
|
logging.error("ERROR {} {} {}".format(self.name, key, e)) |
|
return weight |
|
|