Update app.py
Browse files
app.py
CHANGED
|
@@ -72,11 +72,95 @@ optimize_pipeline_(pipe,
|
|
| 72 |
)
|
| 73 |
print("All models loaded and optimized. Gradio app is ready.")
|
| 74 |
|
| 75 |
-
|
| 76 |
from huggingface_hub import HfApi, upload_file
|
| 77 |
import os
|
| 78 |
import uuid
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
def upload_to_hf(video_path, summary_text):
|
| 81 |
api = HfApi()
|
| 82 |
unique_folder = f"WANI2V-FFLF-Vvideo_{uuid.uuid4().hex[:8]}"
|
|
@@ -228,7 +312,7 @@ def generate_video(
|
|
| 228 |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 229 |
|
| 230 |
progress(1.0, desc="Done!")
|
| 231 |
-
hf_folder =
|
| 232 |
return video_path, current_seed
|
| 233 |
|
| 234 |
|
|
|
|
| 72 |
)
|
| 73 |
print("All models loaded and optimized. Gradio app is ready.")
|
| 74 |
|
| 75 |
+
|
| 76 |
from huggingface_hub import HfApi, upload_file
|
| 77 |
import os
|
| 78 |
import uuid
|
| 79 |
|
| 80 |
+
import subprocess
|
| 81 |
+
import tempfile
|
| 82 |
+
import logging
|
| 83 |
+
import shutil
|
| 84 |
+
import os
|
| 85 |
+
from huggingface_hub import HfApi, upload_file
|
| 86 |
+
from datetime import datetime
|
| 87 |
+
import uuid
|
| 88 |
+
|
| 89 |
+
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")
|
| 90 |
+
|
| 91 |
+
def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
|
| 92 |
+
"""
|
| 93 |
+
Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
input_video_path (str): Path to the original video.
|
| 97 |
+
summary_text (str): Text summary to upload alongside the video.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
str: Hugging Face folder path where the video and summary were uploaded.
|
| 101 |
+
"""
|
| 102 |
+
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
|
| 103 |
+
|
| 104 |
+
# Create a temporary file for the upscaled video
|
| 105 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
|
| 106 |
+
upscaled_path = tmp_upscaled.name
|
| 107 |
+
|
| 108 |
+
# FFmpeg upscale command
|
| 109 |
+
cmd = [
|
| 110 |
+
"ffmpeg",
|
| 111 |
+
"-i", input_video_path,
|
| 112 |
+
"-vf", "scale=3840:2160:flags=lanczos",
|
| 113 |
+
"-c:v", "libx264",
|
| 114 |
+
"-crf", "18",
|
| 115 |
+
"-preset", "slow",
|
| 116 |
+
"-y",
|
| 117 |
+
upscaled_path,
|
| 118 |
+
]
|
| 119 |
+
try:
|
| 120 |
+
subprocess.run(cmd, check=True, capture_output=True)
|
| 121 |
+
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
|
| 122 |
+
except subprocess.CalledProcessError as e:
|
| 123 |
+
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
|
| 124 |
+
raise
|
| 125 |
+
|
| 126 |
+
# Create a date-based folder on HF
|
| 127 |
+
today_str = datetime.now().strftime("%Y-%m-%d")
|
| 128 |
+
unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
|
| 129 |
+
hf_folder = f"{today_str}/{unique_subfolder}"
|
| 130 |
+
|
| 131 |
+
# Upload video
|
| 132 |
+
video_filename = os.path.basename(input_video_path)
|
| 133 |
+
video_hf_path = f"{hf_folder}/{video_filename}"
|
| 134 |
+
upload_file(
|
| 135 |
+
path_or_fileobj=upscaled_path,
|
| 136 |
+
path_in_repo=video_hf_path,
|
| 137 |
+
repo_id=HF_MODEL,
|
| 138 |
+
repo_type="model",
|
| 139 |
+
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
|
| 140 |
+
)
|
| 141 |
+
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")
|
| 142 |
+
|
| 143 |
+
# Upload summary.txt
|
| 144 |
+
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
|
| 145 |
+
with open(summary_file, "w", encoding="utf-8") as f:
|
| 146 |
+
f.write(summary_text)
|
| 147 |
+
|
| 148 |
+
summary_hf_path = f"{hf_folder}/summary.txt"
|
| 149 |
+
upload_file(
|
| 150 |
+
path_or_fileobj=summary_file,
|
| 151 |
+
path_in_repo=summary_hf_path,
|
| 152 |
+
repo_id=HF_MODEL,
|
| 153 |
+
repo_type="model",
|
| 154 |
+
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
|
| 155 |
+
)
|
| 156 |
+
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
|
| 157 |
+
|
| 158 |
+
# Cleanup temporary files
|
| 159 |
+
os.remove(upscaled_path)
|
| 160 |
+
os.remove(summary_file)
|
| 161 |
+
|
| 162 |
+
return hf_folder
|
| 163 |
+
|
| 164 |
def upload_to_hf(video_path, summary_text):
|
| 165 |
api = HfApi()
|
| 166 |
unique_folder = f"WANI2V-FFLF-Vvideo_{uuid.uuid4().hex[:8]}"
|
|
|
|
| 312 |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 313 |
|
| 314 |
progress(1.0, desc="Done!")
|
| 315 |
+
hf_folder = upscale_and_upload_4k(video_path,prompt)
|
| 316 |
return video_path, current_seed
|
| 317 |
|
| 318 |
|