import numpy as np import time import torch import torch.nn.functional as F import torchvision.transforms as T import io import base64 import random import math import os import re import json import importlib from PIL.PngImagePlugin import PngInfo try: import cv2 except: print("OpenCV not installed") pass from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageOps from nodes import MAX_RESOLUTION, SaveImage from comfy_extras.nodes_mask import ImageCompositeMasked from comfy.cli_args import args from comfy.utils import ProgressBar, common_upscale import folder_paths from comfy import model_management try: from server import PromptServer except: PromptServer = None from concurrent.futures import ThreadPoolExecutor script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) class ImagePass: @classmethod def INPUT_TYPES(s): return { "required": { }, "optional": { "image": ("IMAGE",), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "passthrough" CATEGORY = "KJNodes/image" DESCRIPTION = """ Passes the image through without modifying it. """ def passthrough(self, image=None): return image, class ColorMatch: @classmethod def INPUT_TYPES(cls): return { "required": { "image_ref": ("IMAGE",), "image_target": ("IMAGE",), "method": ( [ 'mkl', 'hm', 'reinhard', 'mvgd', 'hm-mvgd-hm', 'hm-mkl-hm', ], { "default": 'mkl' }), }, "optional": { "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "multithread": ("BOOLEAN", {"default": True}), } } CATEGORY = "KJNodes/image" RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = "colormatch" DESCRIPTION = """ color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, paintings and film sequences as well as light-field and stopmotion corrections. The methods behind the mappings are based on the approach from Reinhard et al., the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram matching. As shown below our HM-MVGD-HM compound outperforms existing methods. https://github.com/hahnec/color-matcher/ """ def colormatch(self, image_ref, image_target, method, strength=1.0, multithread=True): try: from color_matcher import ColorMatcher except: raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher") image_ref = image_ref.cpu() image_target = image_target.cpu() batch_size = image_target.size(0) images_target = image_target.squeeze() images_ref = image_ref.squeeze() image_ref_np = images_ref.numpy() images_target_np = images_target.numpy() def process(i): cm = ColorMatcher() image_target_np_i = images_target_np if batch_size == 1 else images_target[i].numpy() image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy() try: image_result = cm.transfer(src=image_target_np_i, ref=image_ref_np_i, method=method) image_result = image_target_np_i + strength * (image_result - image_target_np_i) return torch.from_numpy(image_result) except Exception as e: print(f"Thread {i} error: {e}") return torch.from_numpy(image_target_np_i) # fallback if multithread and batch_size > 1: max_threads = min(os.cpu_count() or 1, batch_size) with ThreadPoolExecutor(max_workers=max_threads) as executor: out = list(executor.map(process, range(batch_size))) else: out = [process(i) for i in range(batch_size)] out = torch.stack(out, dim=0).to(torch.float32) out.clamp_(0, 1) return (out,) class SaveImageWithAlpha: def __init__(self): self.output_dir = folder_paths.get_output_directory() self.type = "output" self.prefix_append = "" @classmethod def INPUT_TYPES(s): return {"required": {"images": ("IMAGE", ), "mask": ("MASK", ), "filename_prefix": ("STRING", {"default": "ComfyUI"})}, "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } RETURN_TYPES = () FUNCTION = "save_images_alpha" OUTPUT_NODE = True CATEGORY = "KJNodes/image" DESCRIPTION = """ Saves an image and mask as .PNG with the mask as the alpha channel. """ def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None): from PIL.PngImagePlugin import PngInfo filename_prefix += self.prefix_append full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) results = list() if mask.dtype == torch.float16: mask = mask.to(torch.float32) def file_counter(): max_counter = 0 # Loop through the existing files for existing_file in os.listdir(full_output_folder): # Check if the file matches the expected format match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file) if match: # Extract the numeric portion of the filename file_counter = int(match.group(1)) # Update the maximum counter value if necessary if file_counter > max_counter: max_counter = file_counter return max_counter for image, alpha in zip(images, mask): i = 255. * image.cpu().numpy() a = 255. * alpha.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) # Resize the mask to match the image size a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS) a_resized = np.clip(a_resized, 0, 255).astype(np.uint8) img.putalpha(Image.fromarray(a_resized, mode='L')) metadata = None if not args.disable_metadata: metadata = PngInfo() if prompt is not None: metadata.add_text("prompt", json.dumps(prompt)) if extra_pnginfo is not None: for x in extra_pnginfo: metadata.add_text(x, json.dumps(extra_pnginfo[x])) # Increment the counter by 1 to get the next available value counter = file_counter() + 1 file = f"{filename}_{counter:05}.png" img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4) results.append({ "filename": file, "subfolder": subfolder, "type": self.type }) return { "ui": { "images": results } } class ImageConcanate: @classmethod def INPUT_TYPES(s): return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",), "direction": ( [ 'right', 'down', 'left', 'up', ], { "default": 'right' }), "match_image_size": ("BOOLEAN", {"default": True}), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "concatenate" CATEGORY = "KJNodes/image" DESCRIPTION = """ Concatenates the image2 to image1 in the specified direction. """ def concatenate(self, image1, image2, direction, match_image_size, first_image_shape=None): # Check if the batch sizes are different batch_size1 = image1.shape[0] batch_size2 = image2.shape[0] if batch_size1 != batch_size2: # Calculate the number of repetitions needed max_batch_size = max(batch_size1, batch_size2) repeats1 = max_batch_size - batch_size1 repeats2 = max_batch_size - batch_size2 # Repeat the last image to match the largest batch size if repeats1 > 0: last_image1 = image1[-1].unsqueeze(0).repeat(repeats1, 1, 1, 1) image1 = torch.cat([image1.clone(), last_image1], dim=0) if repeats2 > 0: last_image2 = image2[-1].unsqueeze(0).repeat(repeats2, 1, 1, 1) image2 = torch.cat([image2.clone(), last_image2], dim=0) if match_image_size: # Use first_image_shape if provided; otherwise, default to image1's shape target_shape = first_image_shape if first_image_shape is not None else image1.shape original_height = image2.shape[1] original_width = image2.shape[2] original_aspect_ratio = original_width / original_height if direction in ['left', 'right']: # Match the height and adjust the width to preserve aspect ratio target_height = target_shape[1] # B, H, W, C format target_width = int(target_height * original_aspect_ratio) elif direction in ['up', 'down']: # Match the width and adjust the height to preserve aspect ratio target_width = target_shape[2] # B, H, W, C format target_height = int(target_width / original_aspect_ratio) # Adjust image2 to the expected format for common_upscale image2_for_upscale = image2.movedim(-1, 1) # Move C to the second position (B, C, H, W) # Resize image2 to match the target size while preserving aspect ratio image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled") # Adjust image2 back to the original format (B, H, W, C) after resizing image2_resized = image2_resized.movedim(1, -1) else: image2_resized = image2 # Ensure both images have the same number of channels channels_image1 = image1.shape[-1] channels_image2 = image2_resized.shape[-1] if channels_image1 != channels_image2: if channels_image1 < channels_image2: # Add alpha channel to image1 if image2 has it alpha_channel = torch.ones((*image1.shape[:-1], channels_image2 - channels_image1), device=image1.device) image1 = torch.cat((image1, alpha_channel), dim=-1) else: # Add alpha channel to image2 if image1 has it alpha_channel = torch.ones((*image2_resized.shape[:-1], channels_image1 - channels_image2), device=image2_resized.device) image2_resized = torch.cat((image2_resized, alpha_channel), dim=-1) # Concatenate based on the specified direction if direction == 'right': concatenated_image = torch.cat((image1, image2_resized), dim=2) # Concatenate along width elif direction == 'down': concatenated_image = torch.cat((image1, image2_resized), dim=1) # Concatenate along height elif direction == 'left': concatenated_image = torch.cat((image2_resized, image1), dim=2) # Concatenate along width elif direction == 'up': concatenated_image = torch.cat((image2_resized, image1), dim=1) # Concatenate along height return concatenated_image, import torch # Make sure you have PyTorch installed class ImageConcatFromBatch: @classmethod def INPUT_TYPES(s): return {"required": { "images": ("IMAGE",), "num_columns": ("INT", {"default": 3, "min": 1, "max": 255, "step": 1}), "match_image_size": ("BOOLEAN", {"default": False}), "max_resolution": ("INT", {"default": 4096}), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "concat" CATEGORY = "KJNodes/image" DESCRIPTION = """ Concatenates images from a batch into a grid with a specified number of columns. """ def concat(self, images, num_columns, match_image_size, max_resolution): # Assuming images is a batch of images (B, H, W, C) batch_size, height, width, channels = images.shape num_rows = (batch_size + num_columns - 1) // num_columns # Calculate number of rows print(f"Initial dimensions: batch_size={batch_size}, height={height}, width={width}, channels={channels}") print(f"num_rows={num_rows}, num_columns={num_columns}") if match_image_size: target_shape = images[0].shape resized_images = [] for image in images: original_height = image.shape[0] original_width = image.shape[1] original_aspect_ratio = original_width / original_height if original_aspect_ratio > 1: target_height = target_shape[0] target_width = int(target_height * original_aspect_ratio) else: target_width = target_shape[1] target_height = int(target_width / original_aspect_ratio) print(f"Resizing image from ({original_height}, {original_width}) to ({target_height}, {target_width})") # Resize the image to match the target size while preserving aspect ratio resized_image = common_upscale(image.movedim(-1, 0), target_width, target_height, "lanczos", "disabled") resized_image = resized_image.movedim(0, -1) # Move channels back to the last dimension resized_images.append(resized_image) # Convert the list of resized images back to a tensor images = torch.stack(resized_images) height, width = target_shape[:2] # Update height and width # Initialize an empty grid grid_height = num_rows * height grid_width = num_columns * width print(f"Grid dimensions before scaling: grid_height={grid_height}, grid_width={grid_width}") # Original scale factor calculation remains unchanged scale_factor = min(max_resolution / grid_height, max_resolution / grid_width, 1.0) # Apply scale factor to height and width scaled_height = height * scale_factor scaled_width = width * scale_factor # Round scaled dimensions to the nearest number divisible by 8 height = max(1, int(round(scaled_height / 8) * 8)) width = max(1, int(round(scaled_width / 8) * 8)) if abs(scaled_height - height) > 4: height = max(1, int(round((scaled_height + 4) / 8) * 8)) if abs(scaled_width - width) > 4: width = max(1, int(round((scaled_width + 4) / 8) * 8)) # Recalculate grid dimensions with adjusted height and width grid_height = num_rows * height grid_width = num_columns * width print(f"Grid dimensions after scaling: grid_height={grid_height}, grid_width={grid_width}") print(f"Final image dimensions: height={height}, width={width}") grid = torch.zeros((grid_height, grid_width, channels), dtype=images.dtype) for idx, image in enumerate(images): resized_image = torch.nn.functional.interpolate(image.unsqueeze(0).permute(0, 3, 1, 2), size=(height, width), mode="bilinear").squeeze().permute(1, 2, 0) row = idx // num_columns col = idx % num_columns grid[row*height:(row+1)*height, col*width:(col+1)*width, :] = resized_image return grid.unsqueeze(0), class ImageGridComposite2x2: @classmethod def INPUT_TYPES(s): return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",), "image3": ("IMAGE",), "image4": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "compositegrid" CATEGORY = "KJNodes/image" DESCRIPTION = """ Concatenates the 4 input images into a 2x2 grid. """ def compositegrid(self, image1, image2, image3, image4): top_row = torch.cat((image1, image2), dim=2) bottom_row = torch.cat((image3, image4), dim=2) grid = torch.cat((top_row, bottom_row), dim=1) return (grid,) class ImageGridComposite3x3: @classmethod def INPUT_TYPES(s): return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",), "image3": ("IMAGE",), "image4": ("IMAGE",), "image5": ("IMAGE",), "image6": ("IMAGE",), "image7": ("IMAGE",), "image8": ("IMAGE",), "image9": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "compositegrid" CATEGORY = "KJNodes/image" DESCRIPTION = """ Concatenates the 9 input images into a 3x3 grid. """ def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9): top_row = torch.cat((image1, image2, image3), dim=2) mid_row = torch.cat((image4, image5, image6), dim=2) bottom_row = torch.cat((image7, image8, image9), dim=2) grid = torch.cat((top_row, mid_row, bottom_row), dim=1) return (grid,) class ImageBatchTestPattern: @classmethod def INPUT_TYPES(s): return {"required": { "batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), "start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}), "text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), "text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), "width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), "height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), "font": (folder_paths.get_filename_list("kjnodes_fonts"), ), "font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "generatetestpattern" CATEGORY = "KJNodes/text" def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y): out = [] # Generate the sequential numbers for each image numbers = np.arange(start_from, start_from + batch_size) font_path = folder_paths.get_full_path("kjnodes_fonts", font) for number in numbers: # Create a black image with the number as a random color text image = Image.new("RGB", (width, height), color='black') draw = ImageDraw.Draw(image) # Generate a random color for the text font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) font = ImageFont.truetype(font_path, font_size) # Get the size of the text and position it in the center text = str(number) try: draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga']) except: draw.text((text_x, text_y), text, font=font, fill=font_color,) # Convert the image to a numpy array and normalize the pixel values image_np = np.array(image).astype(np.float32) / 255.0 image_tensor = torch.from_numpy(image_np).unsqueeze(0) out.append(image_tensor) out_tensor = torch.cat(out, dim=0) return (out_tensor,) class ImageGrabPIL: @classmethod def IS_CHANGED(cls): return RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = "screencap" CATEGORY = "KJNodes/image" DESCRIPTION = """ Captures an area specified by screen coordinates. Can be used for realtime diffusion with autoqueue. """ @classmethod def INPUT_TYPES(s): return { "required": { "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), "num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), "delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}), }, } def screencap(self, x, y, width, height, num_frames, delay): start_time = time.time() captures = [] bbox = (x, y, x + width, y + height) for _ in range(num_frames): # Capture screen screen_capture = ImageGrab.grab(bbox=bbox) screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0) captures.append(screen_capture_torch) # Wait for a short delay if more than one frame is to be captured if num_frames > 1: time.sleep(delay) elapsed_time = time.time() - start_time print(f"screengrab took {elapsed_time} seconds.") return (torch.cat(captures, dim=0),) class Screencap_mss: @classmethod def IS_CHANGED(s, **kwargs): return float("NaN") RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = "screencap" CATEGORY = "KJNodes/image" DESCRIPTION = """ Captures an area specified by screen coordinates. Can be used for realtime diffusion with autoqueue. """ @classmethod def INPUT_TYPES(s): return { "required": { "x": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}), "y": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}), "width": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}), "height": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}), "num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), "delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}), }, } def screencap(self, x, y, width, height, num_frames, delay): from mss import mss captures = [] with mss() as sct: bbox = {'top': y, 'left': x, 'width': width, 'height': height} for _ in range(num_frames): sct_img = sct.grab(bbox) img_np = np.array(sct_img) img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0 captures.append(img_torch) if num_frames > 1: time.sleep(delay) return (torch.stack(captures, 0),) class WebcamCaptureCV2: @classmethod def IS_CHANGED(cls): return RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = "capture" CATEGORY = "KJNodes/experimental" DESCRIPTION = """ Captures a frame from a webcam using CV2. Can be used for realtime diffusion with autoqueue. """ @classmethod def INPUT_TYPES(s): return { "required": { "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), "cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}), "release": ("BOOLEAN", {"default": False}), }, } def capture(self, x, y, cam_index, width, height, release): # Check if the camera index has changed or the capture object doesn't exist if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index: if hasattr(self, "cap") and self.cap is not None: self.cap.release() self.current_cam_index = cam_index self.cap = cv2.VideoCapture(cam_index) try: self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) except: pass if not self.cap.isOpened(): raise Exception("Could not open webcam") ret, frame = self.cap.read() if not ret: raise Exception("Failed to capture image from webcam") # Crop the frame to the specified bbox frame = frame[y:y+height, x:x+width] img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0 if release: self.cap.release() self.cap = None return (img_torch.unsqueeze(0),) class AddLabel: @classmethod def INPUT_TYPES(s): return {"required": { "image":("IMAGE",), "text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}), "text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}), "height": ("INT", {"default": 48, "min": -1, "max": 4096, "step": 1}), "font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}), "font_color": ("STRING", {"default": "white"}), "label_color": ("STRING", {"default": "black"}), "font": (folder_paths.get_filename_list("kjnodes_fonts"), ), "text": ("STRING", {"default": "Text"}), "direction": ( [ 'up', 'down', 'left', 'right', 'overlay' ], { "default": 'up' }), }, "optional":{ "caption": ("STRING", {"default": "", "forceInput": True}), } } RETURN_TYPES = ("IMAGE",) FUNCTION = "addlabel" CATEGORY = "KJNodes/text" DESCRIPTION = """ Creates a new with the given text, and concatenates it to either above or below the input image. Note that this changes the input image's height! Fonts are loaded from this folder: ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts """ def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""): batch_size = image.shape[0] width = image.shape[2] font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font) def process_image(input_image, caption_text): font = ImageFont.truetype(font_path, font_size) words = caption_text.split() lines = [] current_line = [] current_line_width = 0 for word in words: word_width = font.getbbox(word)[2] if current_line_width + word_width <= width - 2 * text_x: current_line.append(word) current_line_width += word_width + font.getbbox(" ")[2] # Add space width else: lines.append(" ".join(current_line)) current_line = [word] current_line_width = word_width if current_line: lines.append(" ".join(current_line)) if direction == 'overlay': pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8)) else: if height == -1: # Adjust the image height automatically margin = 8 required_height = (text_y + len(lines) * font_size) + margin # Calculate required height pil_image = Image.new("RGB", (width, required_height), label_color) else: # Initialize with a minimal height label_image = Image.new("RGB", (width, height), label_color) pil_image = label_image draw = ImageDraw.Draw(pil_image) y_offset = text_y for line in lines: try: draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga']) except: draw.text((text_x, y_offset), line, font=font, fill=font_color) y_offset += font_size processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0) return processed_image if caption == "": processed_images = [process_image(img, text) for img in image] else: assert len(caption) == batch_size, f"Number of captions {(len(caption))} does not match number of images" processed_images = [process_image(img, cap) for img, cap in zip(image, caption)] processed_batch = torch.cat(processed_images, dim=0) # Combine images based on direction if direction == 'down': combined_images = torch.cat((image, processed_batch), dim=1) elif direction == 'up': combined_images = torch.cat((processed_batch, image), dim=1) elif direction == 'left': processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2) combined_images = torch.cat((processed_batch, image), dim=2) elif direction == 'right': processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2) combined_images = torch.cat((image, processed_batch), dim=2) else: combined_images = processed_batch return (combined_images,) class GetImageSizeAndCount: @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), }} RETURN_TYPES = ("IMAGE","INT", "INT", "INT",) RETURN_NAMES = ("image", "width", "height", "count",) FUNCTION = "getsize" CATEGORY = "KJNodes/image" DESCRIPTION = """ Returns width, height and batch size of the image, and passes it through unchanged. """ def getsize(self, image): width = image.shape[2] height = image.shape[1] count = image.shape[0] return {"ui": { "text": [f"{count}x{width}x{height}"]}, "result": (image, width, height, count) } class GetLatentSizeAndCount: @classmethod def INPUT_TYPES(s): return {"required": { "latent": ("LATENT",), }} RETURN_TYPES = ("LATENT","INT", "INT", "INT", "INT", "INT") RETURN_NAMES = ("latent", "batch_size", "channels", "frames", "width", "height") FUNCTION = "getsize" CATEGORY = "KJNodes/image" DESCRIPTION = """ Returns latent tensor dimensions, and passes the latent through unchanged. """ def getsize(self, latent): if len(latent["samples"].shape) == 5: B, C, T, H, W = latent["samples"].shape elif len(latent["samples"].shape) == 4: B, C, H, W = latent["samples"].shape T = 0 else: raise ValueError("Invalid latent shape") return {"ui": { "text": [f"{B}x{C}x{T}x{H}x{W}"]}, "result": (latent, B, C, T, H, W) } class ImageBatchRepeatInterleaving: RETURN_TYPES = ("IMAGE", "MASK",) FUNCTION = "repeat" CATEGORY = "KJNodes/image" DESCRIPTION = """ Repeats each image in a batch by the specified number of times. Example batch of 5 images: 0, 1 ,2, 3, 4 with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 """ @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "repeats": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": { "mask": ("MASK",), } } def repeat(self, images, repeats, mask=None): original_count = images.shape[0] total_count = original_count * repeats repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0) if mask is not None: mask = torch.repeat_interleave(mask, repeats=repeats, dim=0) else: mask = torch.zeros((total_count, images.shape[1], images.shape[2]), device=images.device, dtype=images.dtype) for i in range(original_count): mask[i * repeats] = 1.0 print("mask shape", mask.shape) return (repeated_images, mask) class ImageUpscaleWithModelBatched: @classmethod def INPUT_TYPES(s): return {"required": { "upscale_model": ("UPSCALE_MODEL",), "images": ("IMAGE",), "per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "upscale" CATEGORY = "KJNodes/image" DESCRIPTION = """ Same as ComfyUI native model upscaling node, but allows setting sub-batches for reduced VRAM usage. """ def upscale(self, upscale_model, images, per_batch): device = model_management.get_torch_device() upscale_model.to(device) in_img = images.movedim(-1,-3) steps = in_img.shape[0] pbar = ProgressBar(steps) t = [] for start_idx in range(0, in_img.shape[0], per_batch): sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device)) t.append(sub_images.cpu()) # Calculate the number of images processed in this batch batch_count = sub_images.shape[0] # Update the progress bar by the number of images processed in this batch pbar.update(batch_count) upscale_model.cpu() t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu() return (t,) class ImageNormalize_Neg1_To_1: @classmethod def INPUT_TYPES(s): return {"required": { "images": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "normalize" CATEGORY = "KJNodes/image" DESCRIPTION = """ Normalize the images to be in the range [-1, 1] """ def normalize(self,images): images = images * 2.0 - 1.0 return (images,) class RemapImageRange: @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), "min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}), "max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}), "clamp": ("BOOLEAN", {"default": True}), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "remap" CATEGORY = "KJNodes/image" DESCRIPTION = """ Remaps the image values to the specified range. """ def remap(self, image, min, max, clamp): if image.dtype == torch.float16: image = image.to(torch.float32) image = min + image * (max - min) if clamp: image = torch.clamp(image, min=0.0, max=1.0) return (image, ) class SplitImageChannels: @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), }, } RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK") RETURN_NAMES = ("red", "green", "blue", "mask") FUNCTION = "split" CATEGORY = "KJNodes/image" DESCRIPTION = """ Splits image channels into images where the selected channel is repeated for all channels, and the alpha as a mask. """ def split(self, image): red = image[:, :, :, 0:1] # Red channel green = image[:, :, :, 1:2] # Green channel blue = image[:, :, :, 2:3] # Blue channel alpha = image[:, :, :, 3:4] # Alpha channel alpha = alpha.squeeze(-1) # Repeat the selected channel for all channels red = torch.cat([red, red, red], dim=3) green = torch.cat([green, green, green], dim=3) blue = torch.cat([blue, blue, blue], dim=3) return (red, green, blue, alpha) class MergeImageChannels: @classmethod def INPUT_TYPES(s): return {"required": { "red": ("IMAGE",), "green": ("IMAGE",), "blue": ("IMAGE",), }, "optional": { "alpha": ("MASK", {"default": None}), }, } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = "merge" CATEGORY = "KJNodes/image" DESCRIPTION = """ Merges channel data into an image. """ def merge(self, red, green, blue, alpha=None): image = torch.stack([ red[..., 0, None], # Red channel green[..., 1, None], # Green channel blue[..., 2, None] # Blue channel ], dim=-1) image = image.squeeze(-2) if alpha is not None: image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1) return (image,) class ImagePadForOutpaintMasked: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), }, "optional": { "mask": ("MASK",), } } RETURN_TYPES = ("IMAGE", "MASK") FUNCTION = "expand_image" CATEGORY = "image" def expand_image(self, image, left, top, right, bottom, feathering, mask=None): if mask is not None: if torch.allclose(mask, torch.zeros_like(mask)): print("Warning: The incoming mask is fully black. Handling it as None.") mask = None B, H, W, C = image.size() new_image = torch.ones( (B, H + top + bottom, W + left + right, C), dtype=torch.float32, ) * 0.5 new_image[:, top:top + H, left:left + W, :] = image if mask is None: new_mask = torch.ones( (B, H + top + bottom, W + left + right), dtype=torch.float32, ) t = torch.zeros( (B, H, W), dtype=torch.float32 ) else: # If a mask is provided, pad it to fit the new image size mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0) mask = 1 - mask t = torch.zeros_like(mask) if feathering > 0 and feathering * 2 < H and feathering * 2 < W: for i in range(H): for j in range(W): dt = i if top != 0 else H db = H - i if bottom != 0 else H dl = j if left != 0 else W dr = W - j if right != 0 else W d = min(dt, db, dl, dr) if d >= feathering: continue v = (feathering - d) / feathering if mask is None: t[:, i, j] = v * v else: t[:, top + i, left + j] = v * v if mask is None: new_mask[:, top:top + H, left:left + W] = t return (new_image, new_mask,) else: return (new_image, mask,) class ImagePadForOutpaintTargetSize: upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "upscale_method": (s.upscale_methods,), }, "optional": { "mask": ("MASK",), } } RETURN_TYPES = ("IMAGE", "MASK") FUNCTION = "expand_image" CATEGORY = "image" def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None): B, H, W, C = image.size() new_height = H new_width = W # Calculate the scaling factor while maintaining aspect ratio scaling_factor = min(target_width / W, target_height / H) # Check if the image needs to be downscaled if scaling_factor < 1: image = image.movedim(-1,1) # Calculate the new width and height after downscaling new_width = int(W * scaling_factor) new_height = int(H * scaling_factor) # Downscale the image image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1) if mask is not None: mask_scaled = mask.unsqueeze(0) # Add an extra dimension for batch size mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest") mask_scaled = mask_scaled.squeeze(0) # Remove the extra dimension after interpolation else: mask_scaled = mask else: # If downscaling is not needed, use the original image dimensions image_scaled = image mask_scaled = mask # Calculate how much padding is needed to reach the target dimensions pad_top = max(0, (target_height - new_height) // 2) pad_bottom = max(0, target_height - new_height - pad_top) pad_left = max(0, (target_width - new_width) // 2) pad_right = max(0, target_width - new_width - pad_left) # Now call the original expand_image with the calculated padding return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled) class ImagePrepForICLora: @classmethod def INPUT_TYPES(s): return { "required": { "reference_image": ("IMAGE",), "output_width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), "output_height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), "border_width": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1}), }, "optional": { "latent_image": ("IMAGE",), "latent_mask": ("MASK",), "reference_mask": ("MASK",), } } RETURN_TYPES = ("IMAGE", "MASK") FUNCTION = "expand_image" CATEGORY = "image" def expand_image(self, reference_image, output_width, output_height, border_width, latent_image=None, reference_mask=None, latent_mask=None): if reference_mask is not None: if torch.allclose(reference_mask, torch.zeros_like(reference_mask)): print("Warning: The incoming mask is fully black. Handling it as None.") reference_mask = None image = reference_image if latent_image is not None: if image.shape[0] != latent_image.shape[0]: image = image.repeat(latent_image.shape[0], 1, 1, 1) B, H, W, C = image.size() # Handle mask if reference_mask is not None: resized_mask = torch.nn.functional.interpolate( reference_mask.unsqueeze(1), size=(H, W), mode='nearest' ).squeeze(1) print(resized_mask.shape) image = image * resized_mask.unsqueeze(-1) # Calculate new width maintaining aspect ratio new_width = int((W / H) * output_height) # Resize image to new height while maintaining aspect ratio resized_image = common_upscale(image.movedim(-1,1), new_width, output_height, "lanczos", "disabled").movedim(1,-1) # Create padded image if latent_image is None: pad_image = torch.zeros((B, output_height, output_width, C), device=image.device) else: resized_latent_image = common_upscale(latent_image.movedim(-1,1), output_width, output_height, "lanczos", "disabled").movedim(1,-1) pad_image = resized_latent_image if latent_mask is not None: resized_latent_mask = torch.nn.functional.interpolate( latent_mask.unsqueeze(1), size=(pad_image.shape[1], pad_image.shape[2]), mode='nearest' ).squeeze(1) if border_width > 0: border = torch.zeros((B, output_height, border_width, C), device=image.device) padded_image = torch.cat((resized_image, border, pad_image), dim=2) if latent_mask is not None: padded_mask = torch.zeros((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) padded_mask[:, :, (new_width + border_width):] = resized_latent_mask else: padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) padded_mask[:, :, :new_width + border_width] = 0 else: padded_image = torch.cat((resized_image, pad_image), dim=2) if latent_mask is not None: padded_mask = torch.zeros((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) padded_mask[:, :, new_width:] = resized_latent_mask else: padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) padded_mask[:, :, :new_width] = 0 return (padded_image, padded_mask) class ImageAndMaskPreview(SaveImage): def __init__(self): self.output_dir = folder_paths.get_temp_directory() self.type = "temp" self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) self.compress_level = 4 @classmethod def INPUT_TYPES(s): return { "required": { "mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "mask_color": ("STRING", {"default": "255, 255, 255"}), "pass_through": ("BOOLEAN", {"default": False}), }, "optional": { "image": ("IMAGE",), "mask": ("MASK",), }, "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("composite",) FUNCTION = "execute" CATEGORY = "KJNodes/masking" DESCRIPTION = """ Preview an image or a mask, when both inputs are used composites the mask on top of the image. with pass_through on the preview is disabled and the composite is returned from the composite slot instead, this allows for the preview to be passed for video combine nodes for example. """ def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None): if mask is not None and image is None: preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) elif mask is None and image is not None: preview = image elif mask is not None and image is not None: mask_adjusted = mask * mask_opacity mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone() if ',' in mask_color: color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255) # RGB format else: mask_color = mask_color.lstrip('#') color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)] # Hex format mask_image[:, :, :, 0] = color_list[0] / 255 # Red channel mask_image[:, :, :, 1] = color_list[1] / 255 # Green channel mask_image[:, :, :, 2] = color_list[2] / 255 # Blue channel preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted) if pass_through: return (preview, ) return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo)) def crossfade(images_1, images_2, alpha): crossfade = (1 - alpha) * images_1 + alpha * images_2 return crossfade def ease_in(t): return t * t def ease_out(t): return 1 - (1 - t) * (1 - t) def ease_in_out(t): return 3 * t * t - 2 * t * t * t def bounce(t): if t < 0.5: return ease_out(t * 2) * 0.5 else: return ease_in((t - 0.5) * 2) * 0.5 + 0.5 def elastic(t): return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1)) def glitchy(t): return t + 0.1 * math.sin(40 * t) def exponential_ease_out(t): return 1 - (1 - t) ** 4 easing_functions = { "linear": lambda t: t, "ease_in": ease_in, "ease_out": ease_out, "ease_in_out": ease_in_out, "bounce": bounce, "elastic": elastic, "glitchy": glitchy, "exponential_ease_out": exponential_ease_out, } class CrossFadeImages: RETURN_TYPES = ("IMAGE",) FUNCTION = "crossfadeimages" CATEGORY = "KJNodes/image" @classmethod def INPUT_TYPES(s): return { "required": { "images_1": ("IMAGE",), "images_2": ("IMAGE",), "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), "transition_start_index": ("INT", {"default": 1,"min": -4096, "max": 4096, "step": 1}), "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), "start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}), "end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}), }, } def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level): crossfade_images = [] if transition_start_index < 0: transition_start_index = len(images_1) + transition_start_index if transition_start_index < 0: raise ValueError("Transition start index is out of range for images_1.") transitioning_frames = min(transitioning_frames, len(images_1) - transition_start_index, len(images_2)) alphas = torch.linspace(start_level, end_level, transitioning_frames) for i in range(transitioning_frames): alpha = alphas[i] image1 = images_1[transition_start_index + i] image2 = images_2[i] easing_function = easing_functions.get(interpolation) alpha = easing_function(alpha) # Apply the easing function to the alpha value crossfade_image = crossfade(image1, image2, alpha) crossfade_images.append(crossfade_image) # Convert crossfade_images to tensor crossfade_images = torch.stack(crossfade_images, dim=0) # Append the beginning of images_1 (before the transition) beginning_images_1 = images_1[:transition_start_index] crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0) # Append the remaining frames of images_2 (after the transition) remaining_images_2 = images_2[transitioning_frames:] if len(remaining_images_2) > 0: crossfade_images = torch.cat([crossfade_images, remaining_images_2], dim=0) return (crossfade_images, ) class CrossFadeImagesMulti: RETURN_TYPES = ("IMAGE",) FUNCTION = "crossfadeimages" CATEGORY = "KJNodes/image" @classmethod def INPUT_TYPES(s): return { "required": { "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), "image_1": ("IMAGE",), "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), }, "optional": { "image_2": ("IMAGE",), } } def crossfadeimages(self, inputcount, transitioning_frames, interpolation, **kwargs): image_1 = kwargs["image_1"] first_image_shape = image_1.shape first_image_device = image_1.device height = image_1.shape[1] width = image_1.shape[2] easing_function = easing_functions[interpolation] for c in range(1, inputcount): frames = [] new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)).to(first_image_device) new_image_height = new_image.shape[1] new_image_width = new_image.shape[2] if new_image_height != height or new_image_width != width: new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled") new_image = new_image.movedim(1, -1) # Move channels back to the last dimension last_frame_image_1 = image_1[-1] first_frame_image_2 = new_image[0] for frame in range(transitioning_frames): t = frame / (transitioning_frames - 1) alpha = easing_function(t) alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device) frame_image = crossfade(last_frame_image_1, first_frame_image_2, alpha_tensor) frames.append(frame_image) frames = torch.stack(frames) image_1 = torch.cat((image_1, frames, new_image), dim=0) return image_1, def transition_images(images_1, images_2, alpha, transition_type, blur_radius, reverse): width = images_1.shape[1] height = images_1.shape[0] mask = torch.zeros_like(images_1, device=images_1.device) alpha = alpha.item() if reverse: alpha = 1 - alpha #transitions from matteo's essential nodes if "horizontal slide" in transition_type: pos = round(width * alpha) mask[:, :pos, :] = 1.0 elif "vertical slide" in transition_type: pos = round(height * alpha) mask[:pos, :, :] = 1.0 elif "box" in transition_type: box_w = round(width * alpha) box_h = round(height * alpha) x1 = (width - box_w) // 2 y1 = (height - box_h) // 2 x2 = x1 + box_w y2 = y1 + box_h mask[y1:y2, x1:x2, :] = 1.0 elif "circle" in transition_type: radius = math.ceil(math.sqrt(pow(width, 2) + pow(height, 2)) * alpha / 2) c_x = width // 2 c_y = height // 2 x = torch.arange(0, width, dtype=torch.float32, device="cpu") y = torch.arange(0, height, dtype=torch.float32, device="cpu") y, x = torch.meshgrid((y, x), indexing="ij") circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2) mask[circle] = 1.0 elif "horizontal door" in transition_type: bar = math.ceil(height * alpha / 2) if bar > 0: mask[:bar, :, :] = 1.0 mask[-bar:,:, :] = 1.0 elif "vertical door" in transition_type: bar = math.ceil(width * alpha / 2) if bar > 0: mask[:, :bar,:] = 1.0 mask[:, -bar:,:] = 1.0 elif "fade" in transition_type: mask[:, :, :] = alpha mask = gaussian_blur(mask, blur_radius) return images_1 * (1 - mask) + images_2 * mask def gaussian_blur(mask, blur_radius): if blur_radius > 0: kernel_size = int(blur_radius * 2) + 1 if kernel_size % 2 == 0: kernel_size += 1 # Ensure kernel size is odd sigma = blur_radius / 3 x = torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=torch.float32) x = torch.exp(-0.5 * (x / sigma) ** 2) kernel1d = x / x.sum() kernel2d = kernel1d[:, None] * kernel1d[None, :] kernel2d = kernel2d.to(mask.device) kernel2d = kernel2d.expand(mask.shape[2], 1, kernel2d.shape[0], kernel2d.shape[1]) mask = mask.permute(2, 0, 1).unsqueeze(0) # Change to [C, H, W] and add batch dimension mask = F.conv2d(mask, kernel2d, padding=kernel_size // 2, groups=mask.shape[1]) mask = mask.squeeze(0).permute(1, 2, 0) # Change back to [H, W, C] return mask easing_functions = { "linear": lambda t: t, "ease_in": ease_in, "ease_out": ease_out, "ease_in_out": ease_in_out, "bounce": bounce, "elastic": elastic, "glitchy": glitchy, "exponential_ease_out": exponential_ease_out, } class TransitionImagesMulti: RETURN_TYPES = ("IMAGE",) FUNCTION = "transition" CATEGORY = "KJNodes/image" DESCRIPTION = """ Creates transitions between images. """ @classmethod def INPUT_TYPES(s): return { "required": { "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), "image_1": ("IMAGE",), "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), "transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), "transitioning_frames": ("INT", {"default": 2,"min": 2, "max": 4096, "step": 1}), "blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}), "reverse": ("BOOLEAN", {"default": False}), "device": (["CPU", "GPU"], {"default": "CPU"}), }, "optional": { "image_2": ("IMAGE",), } } def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse, **kwargs): gpu = model_management.get_torch_device() image_1 = kwargs["image_1"] height = image_1.shape[1] width = image_1.shape[2] first_image_shape = image_1.shape first_image_device = image_1.device easing_function = easing_functions[interpolation] for c in range(1, inputcount): frames = [] new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)).to(first_image_device) new_image_height = new_image.shape[1] new_image_width = new_image.shape[2] if new_image_height != height or new_image_width != width: new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled") new_image = new_image.movedim(1, -1) # Move channels back to the last dimension last_frame_image_1 = image_1[-1] first_frame_image_2 = new_image[0] if device == "GPU": last_frame_image_1 = last_frame_image_1.to(gpu) first_frame_image_2 = first_frame_image_2.to(gpu) if reverse: last_frame_image_1, first_frame_image_2 = first_frame_image_2, last_frame_image_1 for frame in range(transitioning_frames): t = frame / (transitioning_frames - 1) alpha = easing_function(t) alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device) frame_image = transition_images(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type, blur_radius, reverse) frames.append(frame_image) frames = torch.stack(frames).cpu() image_1 = torch.cat((image_1, frames, new_image), dim=0) return image_1.cpu(), class TransitionImagesInBatch: RETURN_TYPES = ("IMAGE",) FUNCTION = "transition" CATEGORY = "KJNodes/image" DESCRIPTION = """ Creates transitions between images in a batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), "transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), "blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}), "reverse": ("BOOLEAN", {"default": False}), "device": (["CPU", "GPU"], {"default": "CPU"}), }, } #transitions from matteo's essential nodes def transition(self, images, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse): if images.shape[0] == 1: return images, gpu = model_management.get_torch_device() easing_function = easing_functions[interpolation] images_list = [] pbar = ProgressBar(images.shape[0] - 1) for i in range(images.shape[0] - 1): frames = [] image_1 = images[i] image_2 = images[i + 1] if device == "GPU": image_1 = image_1.to(gpu) image_2 = image_2.to(gpu) if reverse: image_1, image_2 = image_2, image_1 for frame in range(transitioning_frames): t = frame / (transitioning_frames - 1) alpha = easing_function(t) alpha_tensor = torch.tensor(alpha, dtype=image_1.dtype, device=image_1.device) frame_image = transition_images(image_1, image_2, alpha_tensor, transition_type, blur_radius, reverse) frames.append(frame_image) pbar.update(1) frames = torch.stack(frames).cpu() images_list.append(frames) images = torch.cat(images_list, dim=0) return images.cpu(), class ImageBatchJoinWithTransition: RETURN_TYPES = ("IMAGE",) FUNCTION = "transition_batches" CATEGORY = "KJNodes/image" DESCRIPTION = """ Transitions between two batches of images, starting at a specified index in the first batch. During the transition, frames from both batches are blended frame-by-frame, so the video keeps playing. """ @classmethod def INPUT_TYPES(cls): return { "required": { "images_1": ("IMAGE",), "images_2": ("IMAGE",), "start_index": ("INT", {"default": 0, "min": -10000, "max": 10000, "step": 1}), "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), "transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), "transitioning_frames": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}), "blur_radius": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}), "reverse": ("BOOLEAN", {"default": False}), "device": (["CPU", "GPU"], {"default": "CPU"}), }, } def transition_batches(self, images_1, images_2, start_index, interpolation, transition_type, transitioning_frames, blur_radius, reverse, device): if images_1.shape[0] == 0 or images_2.shape[0] == 0: raise ValueError("Both input batches must have at least one image.") if start_index < 0: start_index = images_1.shape[0] + start_index if start_index < 0 or start_index > images_1.shape[0]: raise ValueError("start_index is out of range.") gpu = model_management.get_torch_device() easing_function = easing_functions[interpolation] out_frames = [] # Add images from images_1 up to start_index if start_index > 0: out_frames.append(images_1[:start_index]) # Determine how many frames we can blend max_transition = min(transitioning_frames, images_1.shape[0] - start_index, images_2.shape[0]) # Blend corresponding frames from both batches for i in range(max_transition): img1 = images_1[start_index + i] img2 = images_2[i] if device == "GPU": img1 = img1.to(gpu) img2 = img2.to(gpu) if reverse: img1, img2 = img2, img1 t = i / (max_transition - 1) if max_transition > 1 else 1.0 alpha = easing_function(t) alpha_tensor = torch.tensor(alpha, dtype=img1.dtype, device=img1.device) frame_image = transition_images(img1, img2, alpha_tensor, transition_type, blur_radius, reverse) out_frames.append(frame_image.cpu().unsqueeze(0)) # Add remaining images from images_2 after transition if images_2.shape[0] > max_transition: out_frames.append(images_2[max_transition:]) # Concatenate all frames out = torch.cat(out_frames, dim=0) return (out.cpu(),) class ShuffleImageBatch: RETURN_TYPES = ("IMAGE",) FUNCTION = "shuffle" CATEGORY = "KJNodes/image" @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}), }, } def shuffle(self, images, seed): torch.manual_seed(seed) B, H, W, C = images.shape indices = torch.randperm(B) shuffled_images = images[indices] return shuffled_images, class GetImageRangeFromBatch: RETURN_TYPES = ("IMAGE", "MASK", ) FUNCTION = "imagesfrombatch" CATEGORY = "KJNodes/image" DESCRIPTION = """ Returns a range of images from a batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), "num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}), }, "optional": { "images": ("IMAGE",), "masks": ("MASK",), } } def imagesfrombatch(self, start_index, num_frames, images=None, masks=None): chosen_images = None chosen_masks = None # Process images if provided if images is not None: if start_index == -1: start_index = max(0, len(images) - num_frames) if start_index < 0 or start_index >= len(images): raise ValueError("Start index is out of range") end_index = min(start_index + num_frames, len(images)) chosen_images = images[start_index:end_index] # Process masks if provided if masks is not None: if start_index == -1: start_index = max(0, len(masks) - num_frames) if start_index < 0 or start_index >= len(masks): raise ValueError("Start index is out of range for masks") end_index = min(start_index + num_frames, len(masks)) chosen_masks = masks[start_index:end_index] return (chosen_images, chosen_masks,) class GetLatentRangeFromBatch: RETURN_TYPES = ("LATENT", ) FUNCTION = "latentsfrombatch" CATEGORY = "KJNodes/latents" DESCRIPTION = """ Returns a range of latents from a batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "latents": ("LATENT",), "start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), "num_frames": ("INT", {"default": 1,"min": -1, "max": 4096, "step": 1}), }, } def latentsfrombatch(self, latents, start_index, num_frames): chosen_latents = None samples = latents["samples"] if len(samples.shape) == 4: B, C, H, W = samples.shape num_latents = B elif len(samples.shape) == 5: B, C, T, H, W = samples.shape num_latents = T if start_index == -1: start_index = max(0, num_latents - num_frames) if start_index < 0 or start_index >= num_latents: raise ValueError("Start index is out of range") end_index = num_latents if num_frames == -1 else min(start_index + num_frames, num_latents) if len(samples.shape) == 4: chosen_latents = samples[start_index:end_index] elif len(samples.shape) == 5: chosen_latents = samples[:, :, start_index:end_index] return ({"samples": chosen_latents.contiguous(),},) class InsertLatentToIndex: RETURN_TYPES = ("LATENT", ) FUNCTION = "insert" CATEGORY = "KJNodes/latents" DESCRIPTION = """ Inserts a latent at the specified index into the original latent batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "source": ("LATENT",), "destination": ("LATENT",), "index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), }, } def insert(self, source, destination, index): samples_destination = destination["samples"] samples_source = source["samples"].to(samples_destination) if len(samples_source.shape) == 4: B, C, H, W = samples_source.shape num_latents = B elif len(samples_source.shape) == 5: B, C, T, H, W = samples_source.shape num_latents = T if index >= num_latents or index < 0: raise ValueError(f"Index {index} out of bounds for tensor with {num_latents} latents") if len(samples_source.shape) == 4: joined_latents = torch.cat([ samples_destination[:index], samples_source, samples_destination[index+1:] ], dim=0) else: joined_latents = torch.cat([ samples_destination[:, :, :index], samples_source, samples_destination[:, :, index+1:] ], dim=2) return ({"samples": joined_latents,},) class ImageBatchFilter: RETURN_TYPES = ("IMAGE", "STRING",) RETURN_NAMES = ("images", "removed_indices",) FUNCTION = "filter" CATEGORY = "KJNodes/image" DESCRIPTION = "Removes empty images from a batch" @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "empty_color": ("STRING", {"default": "0, 0, 0"}), "empty_threshold": ("FLOAT", {"default": 0.01,"min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "replacement_image": ("IMAGE",), } } def filter(self, images, empty_color, empty_threshold, replacement_image=None): B, H, W, C = images.shape input_images = images.clone() empty_color_list = [int(color.strip()) for color in empty_color.split(',')] empty_color_tensor = torch.tensor(empty_color_list, dtype=torch.float32).to(input_images.device) color_diff = torch.abs(input_images - empty_color_tensor) mean_diff = color_diff.mean(dim=(1, 2, 3)) empty_indices = mean_diff <= empty_threshold empty_indices_string = ', '.join([str(i) for i in range(B) if empty_indices[i]]) if replacement_image is not None: B_rep, H_rep, W_rep, C_rep = replacement_image.shape replacement = replacement_image.clone() if (H_rep != images.shape[1]) or (W_rep != images.shape[2]) or (C_rep != images.shape[3]): replacement = common_upscale(replacement.movedim(-1, 1), W, H, "lanczos", "center").movedim(1, -1) input_images[empty_indices] = replacement[0] return (input_images, empty_indices_string,) else: non_empty_images = input_images[~empty_indices] return (non_empty_images, empty_indices_string,) class GetImagesFromBatchIndexed: RETURN_TYPES = ("IMAGE",) FUNCTION = "indexedimagesfrombatch" CATEGORY = "KJNodes/image" DESCRIPTION = """ Selects and returns the images at the specified indices as an image batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), }, } def indexedimagesfrombatch(self, images, indexes): # Parse the indexes string into a list of integers index_list = [int(index.strip()) for index in indexes.split(',')] # Convert list of indices to a PyTorch tensor indices_tensor = torch.tensor(index_list, dtype=torch.long) # Select the images at the specified indices chosen_images = images[indices_tensor] return (chosen_images,) class InsertImagesToBatchIndexed: RETURN_TYPES = ("IMAGE",) FUNCTION = "insertimagesfrombatch" CATEGORY = "KJNodes/image" DESCRIPTION = """ Inserts images at the specified indices into the original image batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "original_images": ("IMAGE",), "images_to_insert": ("IMAGE",), "indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), }, "optional": { "mode": (["replace", "insert"],), } } def insertimagesfrombatch(self, original_images, images_to_insert, indexes, mode="replace"): if indexes == "": return (original_images,) input_images = original_images.clone() # Parse the indexes string into a list of integers index_list = [int(index.strip()) for index in indexes.split(',')] # Convert list of indices to a PyTorch tensor indices_tensor = torch.tensor(index_list, dtype=torch.long) # Ensure the images_to_insert is a tensor if not isinstance(images_to_insert, torch.Tensor): images_to_insert = torch.tensor(images_to_insert) if mode == "replace": # Replace the images at the specified indices for index, image in zip(indices_tensor, images_to_insert): input_images[index] = image else: # Create a list to hold the new image sequence new_images = [] insert_offset = 0 for i in range(len(input_images) + len(indices_tensor)): if insert_offset < len(indices_tensor) and i == indices_tensor[insert_offset]: # Use modulo to cycle through images_to_insert new_images.append(images_to_insert[insert_offset % len(images_to_insert)]) insert_offset += 1 else: new_images.append(input_images[i - insert_offset]) # Convert the list back to a tensor input_images = torch.stack(new_images, dim=0) return (input_images,) class PadImageBatchInterleaved: RETURN_TYPES = ("IMAGE", "MASK",) RETURN_NAMES = ("images", "masks",) FUNCTION = "pad" CATEGORY = "KJNodes/image" DESCRIPTION = """ Inserts empty frames between the images in a batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "empty_frames_per_image": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), "pad_frame_value": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}), "add_after_last": ("BOOLEAN", {"default": False}), }, } def pad(self, images, empty_frames_per_image, pad_frame_value, add_after_last): B, H, W, C = images.shape # Handle single frame case specifically if B == 1: total_frames = 1 + empty_frames_per_image if add_after_last else 1 else: # Original B images + (B-1) sets of empty frames between them total_frames = B + (B-1) * empty_frames_per_image # Add additional empty frames after the last image if requested if add_after_last: total_frames += empty_frames_per_image # Create new tensor with zeros (empty frames) padded_batch = torch.ones((total_frames, H, W, C), dtype=images.dtype, device=images.device) * pad_frame_value # Create mask tensor (1 for original frames, 0 for empty frames) mask = torch.zeros((total_frames, H, W), dtype=images.dtype, device=images.device) # Fill in original images at their new positions for i in range(B): if B == 1: # For single frame, just place it at the beginning new_pos = 0 else: # Each image is separated by empty_frames_per_image blank frames new_pos = i * (empty_frames_per_image + 1) padded_batch[new_pos] = images[i] mask[new_pos] = 1.0 # Mark this as an original frame return (padded_batch, mask) class ReplaceImagesInBatch: RETURN_TYPES = ("IMAGE", "MASK",) FUNCTION = "replace" CATEGORY = "KJNodes/image" DESCRIPTION = """ Replaces the images in a batch, starting from the specified start index, with the replacement images. """ @classmethod def INPUT_TYPES(s): return { "required": { "start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), }, "optional": { "original_images": ("IMAGE",), "replacement_images": ("IMAGE",), "original_masks": ("MASK",), "replacement_masks": ("MASK",), } } def replace(self, original_images=None, replacement_images=None, start_index=1, original_masks=None, replacement_masks=None): images = None masks = None if original_images is not None and replacement_images is not None: if start_index >= len(original_images): raise ValueError("ReplaceImagesInBatch: Start index is out of range") end_index = start_index + len(replacement_images) if end_index > len(original_images): raise ValueError("ReplaceImagesInBatch: End index is out of range") original_images_copy = original_images.clone() if original_images_copy.shape[2] != replacement_images.shape[2] or original_images_copy.shape[3] != replacement_images.shape[3]: replacement_images = common_upscale(replacement_images.movedim(-1, 1), original_images_copy.shape[1], original_images_copy.shape[2], "lanczos", "center").movedim(1, -1) original_images_copy[start_index:end_index] = replacement_images images = original_images_copy else: images = torch.zeros((1, 64, 64, 3)) if original_masks is not None and replacement_masks is not None: if start_index >= len(original_masks): raise ValueError("ReplaceImagesInBatch: Start index is out of range") end_index = start_index + len(replacement_masks) if end_index > len(original_masks): raise ValueError("ReplaceImagesInBatch: End index is out of range") original_masks_copy = original_masks.clone() if original_masks_copy.shape[1] != replacement_masks.shape[1] or original_masks_copy.shape[2] != replacement_masks.shape[2]: replacement_masks = common_upscale(replacement_masks.unsqueeze(1), original_masks_copy.shape[1], original_masks_copy.shape[2], "nearest-exact", "center").squeeze(0) original_masks_copy[start_index:end_index] = replacement_masks masks = original_masks_copy else: masks = torch.zeros((1, 64, 64)) return (images, masks) class ReverseImageBatch: RETURN_TYPES = ("IMAGE",) FUNCTION = "reverseimagebatch" CATEGORY = "KJNodes/image" DESCRIPTION = """ Reverses the order of the images in a batch. """ @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), }, } def reverseimagebatch(self, images): reversed_images = torch.flip(images, [0]) return (reversed_images, ) class ImageBatchMulti: @classmethod def INPUT_TYPES(s): return { "required": { "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), "image_1": ("IMAGE", ), }, "optional": { "image_2": ("IMAGE", ), } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("images",) FUNCTION = "combine" CATEGORY = "KJNodes/image" DESCRIPTION = """ Creates an image batch from multiple images. You can set how many inputs the node has, with the **inputcount** and clicking update. """ def combine(self, inputcount, **kwargs): from nodes import ImageBatch image_batch_node = ImageBatch() image = kwargs["image_1"].cpu() first_image_shape = image.shape for c in range(1, inputcount): new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)).cpu() image, = image_batch_node.batch(image, new_image) return (image,) class ImageTensorList: @classmethod def INPUT_TYPES(s): return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "append" CATEGORY = "KJNodes/image" DESCRIPTION = """ Creates an image list from the input images. """ def append(self, image1, image2): image_list = [] if isinstance(image1, torch.Tensor) and isinstance(image2, torch.Tensor): image_list = [image1, image2] elif isinstance(image1, list) and isinstance(image2, torch.Tensor): image_list = image1 + [image2] elif isinstance(image1, torch.Tensor) and isinstance(image2, list): image_list = [image1] + image2 elif isinstance(image1, list) and isinstance(image2, list): image_list = image1 + image2 return image_list, class ImageAddMulti: @classmethod def INPUT_TYPES(s): return { "required": { "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), "image_1": ("IMAGE", ), "image_2": ("IMAGE", ), "blending": ( [ 'add', 'subtract', 'multiply', 'difference', ], { "default": 'add' }), "blend_amount": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}), }, } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("images",) FUNCTION = "add" CATEGORY = "KJNodes/image" DESCRIPTION = """ Add blends multiple images together. You can set how many inputs the node has, with the **inputcount** and clicking update. """ def add(self, inputcount, blending, blend_amount, **kwargs): image = kwargs["image_1"] for c in range(1, inputcount): new_image = kwargs[f"image_{c + 1}"] if blending == "add": image = torch.add(image * blend_amount, new_image * blend_amount) elif blending == "subtract": image = torch.sub(image * blend_amount, new_image * blend_amount) elif blending == "multiply": image = torch.mul(image * blend_amount, new_image * blend_amount) elif blending == "difference": image = torch.sub(image, new_image) return (image,) class ImageConcatMulti: @classmethod def INPUT_TYPES(s): return { "required": { "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), "image_1": ("IMAGE", ), "direction": ( [ 'right', 'down', 'left', 'up', ], { "default": 'right' }), "match_image_size": ("BOOLEAN", {"default": False}), }, "optional": { "image_2": ("IMAGE", ), }, } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("images",) FUNCTION = "combine" CATEGORY = "KJNodes/image" DESCRIPTION = """ Creates an image from multiple images. You can set how many inputs the node has, with the **inputcount** and clicking update. """ def combine(self, inputcount, direction, match_image_size, **kwargs): image = kwargs["image_1"] first_image_shape = None if first_image_shape is None: first_image_shape = image.shape for c in range(1, inputcount): new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)) image, = ImageConcanate.concatenate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape) first_image_shape = None return (image,) class PreviewAnimation: def __init__(self): self.output_dir = folder_paths.get_temp_directory() self.type = "temp" self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) self.compress_level = 1 methods = {"default": 4, "fastest": 0, "slowest": 6} @classmethod def INPUT_TYPES(s): return {"required": { "fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}), }, "optional": { "images": ("IMAGE", ), "masks": ("MASK", ), }, } RETURN_TYPES = () FUNCTION = "preview" OUTPUT_NODE = True CATEGORY = "KJNodes/image" def preview(self, fps, images=None, masks=None): filename_prefix = "AnimPreview" full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) results = list() pil_images = [] if images is not None and masks is not None: for image in images: i = 255. * image.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) pil_images.append(img) for mask in masks: if pil_images: mask_np = mask.cpu().numpy() mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8) # Convert to values between 0 and 255 mask_img = Image.fromarray(mask_np, mode='L') img = pil_images.pop(0) # Remove and get the first image img = img.convert("RGBA") # Convert base image to RGBA # Create a new RGBA image based on the grayscale mask rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255)) rgba_mask_img.putalpha(mask_img) # Use the mask image as the alpha channel # Composite the RGBA mask onto the base image composited_img = Image.alpha_composite(img, rgba_mask_img) pil_images.append(composited_img) # Add the composited image back elif images is not None and masks is None: for image in images: i = 255. * image.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) pil_images.append(img) elif masks is not None and images is None: for mask in masks: mask_np = 255. * mask.cpu().numpy() mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8)) pil_images.append(mask_img) else: print("PreviewAnimation: No images or masks provided") return { "ui": { "images": results, "animated": (None,), "text": "empty" }} num_frames = len(pil_images) c = len(pil_images) for i in range(0, c, num_frames): file = f"{filename}_{counter:05}_.webp" pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=50, method=0) results.append({ "filename": file, "subfolder": subfolder, "type": self.type }) counter += 1 animated = num_frames != 1 return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } } class ImageResizeKJ: upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), "upscale_method": (s.upscale_methods,), "keep_proportion": ("BOOLEAN", { "default": False }), "divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), }, "optional" : { #"width_input": ("INT", { "forceInput": True}), #"height_input": ("INT", { "forceInput": True}), "get_image_size": ("IMAGE",), "crop": (["disabled","center", 0], { "tooltip": "0 will do the default center crop, this is a workaround for the widget order changing with the new frontend, as in old workflows the value of this widget becomes 0 automatically" }), } } RETURN_TYPES = ("IMAGE", "INT", "INT",) RETURN_NAMES = ("IMAGE", "width", "height",) FUNCTION = "resize" CATEGORY = "KJNodes/image" DEPRECATED = True DESCRIPTION = """ DEPRECATED! Due to ComfyUI frontend changes, this node should no longer be used, please check the v2 of the node. This node is only kept to not completely break older workflows. """ def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, width_input=None, height_input=None, get_image_size=None, crop="disabled"): B, H, W, C = image.shape if width_input: width = width_input if height_input: height = height_input if get_image_size is not None: _, height, width, _ = get_image_size.shape if keep_proportion and get_image_size is None: # If one of the dimensions is zero, calculate it to maintain the aspect ratio if width == 0 and height != 0: ratio = height / H width = round(W * ratio) elif height == 0 and width != 0: ratio = width / W height = round(H * ratio) elif width != 0 and height != 0: # Scale based on which dimension is smaller in proportion to the desired dimensions ratio = min(width / W, height / H) width = round(W * ratio) height = round(H * ratio) else: if width == 0: width = W if height == 0: height = H if divisible_by > 1 and get_image_size is None: width = width - (width % divisible_by) height = height - (height % divisible_by) if crop == 0: #workaround for old workflows crop = "center" image = image.movedim(-1,1) image = common_upscale(image, width, height, upscale_method, crop) image = image.movedim(1,-1) return(image, image.shape[2], image.shape[1],) class ImageResizeKJv2: upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), "upscale_method": (s.upscale_methods,), "keep_proportion": (["stretch", "resize", "pad", "pad_edge", "crop"], { "default": False }), "pad_color": ("STRING", { "default": "0, 0, 0", "tooltip": "Color to use for padding."}), "crop_position": (["center", "top", "bottom", "left", "right"], { "default": "center" }), "divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), }, "optional" : { "mask": ("MASK",), "device": (["cpu", "gpu"],), }, "hidden": { "unique_id": "UNIQUE_ID", }, } RETURN_TYPES = ("IMAGE", "INT", "INT", "MASK",) RETURN_NAMES = ("IMAGE", "width", "height", "mask",) FUNCTION = "resize" CATEGORY = "KJNodes/image" DESCRIPTION = """ Resizes the image to the specified width and height. Size can be retrieved from the input. Keep proportions keeps the aspect ratio of the image, by highest dimension. """ def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, pad_color, crop_position, unique_id, device="cpu", mask=None): B, H, W, C = image.shape if device == "gpu": if upscale_method == "lanczos": raise Exception("Lanczos is not supported on the GPU") device = model_management.get_torch_device() else: device = torch.device("cpu") if width == 0: width = W if height == 0: height = H if keep_proportion == "resize" or keep_proportion.startswith("pad"): # If one of the dimensions is zero, calculate it to maintain the aspect ratio if width == 0 and height != 0: ratio = height / H new_width = round(W * ratio) elif height == 0 and width != 0: ratio = width / W new_height = round(H * ratio) elif width != 0 and height != 0: # Scale based on which dimension is smaller in proportion to the desired dimensions ratio = min(width / W, height / H) new_width = round(W * ratio) new_height = round(H * ratio) if keep_proportion.startswith("pad"): # Calculate padding based on position if crop_position == "center": pad_left = (width - new_width) // 2 pad_right = width - new_width - pad_left pad_top = (height - new_height) // 2 pad_bottom = height - new_height - pad_top elif crop_position == "top": pad_left = (width - new_width) // 2 pad_right = width - new_width - pad_left pad_top = 0 pad_bottom = height - new_height elif crop_position == "bottom": pad_left = (width - new_width) // 2 pad_right = width - new_width - pad_left pad_top = height - new_height pad_bottom = 0 elif crop_position == "left": pad_left = 0 pad_right = width - new_width pad_top = (height - new_height) // 2 pad_bottom = height - new_height - pad_top elif crop_position == "right": pad_left = width - new_width pad_right = 0 pad_top = (height - new_height) // 2 pad_bottom = height - new_height - pad_top width = new_width height = new_height if divisible_by > 1: width = width - (width % divisible_by) height = height - (height % divisible_by) out_image = image.clone().to(device) if mask is not None: out_mask = mask.clone().to(device) else: out_mask = None if keep_proportion == "crop": old_width = W old_height = H old_aspect = old_width / old_height new_aspect = width / height # Calculate dimensions to keep if old_aspect > new_aspect: # Image is wider than target crop_w = round(old_height * new_aspect) crop_h = old_height else: # Image is taller than target crop_w = old_width crop_h = round(old_width / new_aspect) # Calculate crop position if crop_position == "center": x = (old_width - crop_w) // 2 y = (old_height - crop_h) // 2 elif crop_position == "top": x = (old_width - crop_w) // 2 y = 0 elif crop_position == "bottom": x = (old_width - crop_w) // 2 y = old_height - crop_h elif crop_position == "left": x = 0 y = (old_height - crop_h) // 2 elif crop_position == "right": x = old_width - crop_w y = (old_height - crop_h) // 2 # Apply crop out_image = out_image.narrow(-2, x, crop_w).narrow(-3, y, crop_h) if mask is not None: out_mask = out_mask.narrow(-1, x, crop_w).narrow(-2, y, crop_h) out_image = common_upscale(out_image.movedim(-1,1), width, height, upscale_method, crop="disabled").movedim(1,-1) if mask is not None: if upscale_method == "lanczos": out_mask = common_upscale(out_mask.unsqueeze(1).repeat(1, 3, 1, 1), width, height, upscale_method, crop="disabled").movedim(1,-1)[:, :, :, 0] else: out_mask = common_upscale(out_mask.unsqueeze(1), width, height, upscale_method, crop="disabled").squeeze(1) if keep_proportion.startswith("pad"): if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0: padded_width = width + pad_left + pad_right padded_height = height + pad_top + pad_bottom if divisible_by > 1: width_remainder = padded_width % divisible_by height_remainder = padded_height % divisible_by if width_remainder > 0: extra_width = divisible_by - width_remainder pad_right += extra_width if height_remainder > 0: extra_height = divisible_by - height_remainder pad_bottom += extra_height out_image, _ = ImagePadKJ.pad(self, out_image, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color") if mask is not None: out_mask = out_mask.unsqueeze(1).repeat(1, 3, 1, 1).movedim(1,-1) out_mask, _ = ImagePadKJ.pad(self, out_mask, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color") out_mask = out_mask[:, :, :, 0] else: B, H_pad, W_pad, _ = out_image.shape out_mask = torch.ones((B, H_pad, W_pad), dtype=out_image.dtype, device=out_image.device) out_mask[:, pad_top:pad_top+height, pad_left:pad_left+width] = 0.0 if unique_id and PromptServer is not None: try: num_elements = out_image.numel() element_size = out_image.element_size() memory_size_mb = (num_elements * element_size) / (1024 * 1024) PromptServer.instance.send_progress_text( f"