rahul7star commited on
Commit
7fecea0
·
verified ·
1 Parent(s): 7d3cca8

Create app_lora.py

Browse files
Files changed (1) hide show
  1. app_lora.py +178 -0
app_lora.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
3
+ from diffusers.utils import export_to_video
4
+ from transformers import CLIPVisionModel
5
+ import gradio as gr
6
+ import tempfile
7
+ import spaces
8
+ from huggingface_hub import hf_hub_download
9
+ import numpy as np
10
+ from PIL import Image
11
+ import random
12
+
13
+ MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
14
+
15
+ LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
16
+ LORA_FILENAME = "FusionX_LoRa/Wan2.1_T2V_14B_FusionX_LoRA.safetensors"
17
+
18
+ image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
19
+ vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
20
+ pipe = WanImageToVideoPipeline.from_pretrained(
21
+ MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
22
+ )
23
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
24
+ pipe.to("cuda")
25
+
26
+ causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
27
+ pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
28
+ pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
29
+ pipe.fuse_lora()
30
+
31
+ MOD_VALUE = 32
32
+ DEFAULT_H_SLIDER_VALUE = 640
33
+ DEFAULT_W_SLIDER_VALUE = 1024
34
+ NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
35
+
36
+ SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
37
+ SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
38
+ MAX_SEED = np.iinfo(np.int32).max
39
+
40
+ FIXED_FPS = 24
41
+ MIN_FRAMES_MODEL = 8
42
+ MAX_FRAMES_MODEL = 81
43
+
44
+ default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
45
+ default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
46
+
47
+
48
+ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
49
+ min_slider_h, max_slider_h,
50
+ min_slider_w, max_slider_w,
51
+ default_h, default_w):
52
+ orig_w, orig_h = pil_image.size
53
+ if orig_w <= 0 or orig_h <= 0:
54
+ return default_h, default_w
55
+
56
+ aspect_ratio = orig_h / orig_w
57
+
58
+ calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
59
+ calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
60
+
61
+ calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
62
+ calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
63
+
64
+ new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
65
+ new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
66
+
67
+ return new_h, new_w
68
+
69
+ def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
70
+ if uploaded_pil_image is None:
71
+ return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
72
+ try:
73
+ new_h, new_w = _calculate_new_dimensions_wan(
74
+ uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
75
+ SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
76
+ DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
77
+ )
78
+ return gr.update(value=new_h), gr.update(value=new_w)
79
+ except Exception as e:
80
+ gr.Warning("Error attempting to calculate new dimensions")
81
+ return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
82
+
83
+ def get_duration(input_image, prompt, height, width,
84
+ negative_prompt, duration_seconds,
85
+ guidance_scale, steps,
86
+ seed, randomize_seed,
87
+ progress):
88
+ if steps > 4 and duration_seconds > 2:
89
+ return 90
90
+ elif steps > 4 or duration_seconds > 2:
91
+ return 75
92
+ else:
93
+ return 60
94
+
95
+ @spaces.GPU(duration=get_duration)
96
+ def generate_video(input_image, prompt, height, width,
97
+ negative_prompt=default_negative_prompt, duration_seconds = 2,
98
+ guidance_scale = 1, steps = 4,
99
+ seed = 42, randomize_seed = False,
100
+ progress=gr.Progress(track_tqdm=True)):
101
+
102
+ if input_image is None:
103
+ raise gr.Error("Please upload an input image.")
104
+
105
+ target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
106
+ target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
107
+
108
+ num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
109
+
110
+ current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
111
+
112
+ resized_image = input_image.resize((target_w, target_h))
113
+
114
+ with torch.inference_mode():
115
+ output_frames_list = pipe(
116
+ image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
117
+ height=target_h, width=target_w, num_frames=num_frames,
118
+ guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
119
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
120
+ ).frames[0]
121
+
122
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
123
+ video_path = tmpfile.name
124
+ export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
125
+ return video_path, current_seed
126
+
127
+ with gr.Blocks() as demo:
128
+ gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
129
+ gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
130
+ with gr.Row():
131
+ with gr.Column():
132
+ input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
133
+ prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
134
+ duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
135
+
136
+ with gr.Accordion("Advanced Settings", open=False):
137
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
138
+ seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
139
+ randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
140
+ with gr.Row():
141
+ height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
142
+ width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
143
+ steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
144
+ guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
145
+
146
+ generate_button = gr.Button("Generate Video", variant="primary")
147
+ with gr.Column():
148
+ video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
149
+
150
+ input_image_component.upload(
151
+ fn=handle_image_upload_for_dims_wan,
152
+ inputs=[input_image_component, height_input, width_input],
153
+ outputs=[height_input, width_input]
154
+ )
155
+
156
+ input_image_component.clear(
157
+ fn=handle_image_upload_for_dims_wan,
158
+ inputs=[input_image_component, height_input, width_input],
159
+ outputs=[height_input, width_input]
160
+ )
161
+
162
+ ui_inputs = [
163
+ input_image_component, prompt_input, height_input, width_input,
164
+ negative_prompt_input, duration_seconds_input,
165
+ guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
166
+ ]
167
+ generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
168
+
169
+ gr.Examples(
170
+ examples=[
171
+ ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
172
+ ["forg.jpg", "the frog jumps around", 448, 832],
173
+ ],
174
+ inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
175
+ )
176
+
177
+ if __name__ == "__main__":
178
+ demo.queue().launch()