rahul7star commited on
Commit
9fc3f93
·
verified ·
1 Parent(s): 4ca75ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -21
app.py CHANGED
@@ -39,37 +39,51 @@ pipe.to("cuda")
39
  from huggingface_hub import hf_hub_download
40
  import torch
41
 
 
 
 
42
  # Load FusionX enhancement LoRAs
43
  lora_adapters = []
44
  lora_weights = []
45
 
46
- # Helper to print model keys
47
- def print_model_keys(model, show_values=False):
48
- print("\n🔑 Model State Dict Keys:")
49
- for k, v in model.state_dict().items():
50
- if show_values:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  print(f"{k}: {v.shape}")
52
- else:
53
- print(k)
54
 
55
- # Print keys in UNet, Text Encoder, VAE
56
- print_model_keys(pipe.unet, show_values=True)
57
- print_model_keys(pipe.text_encoder, show_values=True)
58
- print_model_keys(pipe.vae, show_values=True)
59
 
60
- # Download LoRA file
61
  lora_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
62
 
63
- # Print keys from LoRA checkpoint
64
- print("\n📦 LoRA Checkpoint Keys:")
65
- try:
66
- lora_checkpoint = torch.load(lora_path, map_location="cpu")
67
- for k, v in lora_checkpoint.items():
68
- print(f"{k}: {v.shape}")
69
- except Exception as e:
70
- print(f"❌ Failed to load LoRA file for key inspection: {e}")
71
 
72
- # Load and fuse LoRA
73
  try:
74
  pipe.load_lora_weights(lora_path, adapter_name="main")
75
  pipe.set_adapters(["main"], adapter_weights=[1.0])
 
39
  from huggingface_hub import hf_hub_download
40
  import torch
41
 
42
+ from huggingface_hub import hf_hub_download
43
+ import torch
44
+
45
  # Load FusionX enhancement LoRAs
46
  lora_adapters = []
47
  lora_weights = []
48
 
49
+ # Print all named parameters (safely) from any pipeline
50
+ def print_named_params(module, module_name=""):
51
+ print(f"\n🔍 Parameters in {module_name or 'pipeline'}:")
52
+ for name, param in module.named_parameters():
53
+ print(f"{name}: {param.shape}")
54
+
55
+ # Try printing known submodules in the pipeline
56
+ def print_all_pipeline_keys(pipe):
57
+ print("🧠 Exploring pipeline structure:")
58
+ for attr in dir(pipe):
59
+ if not attr.startswith("_"):
60
+ try:
61
+ obj = getattr(pipe, attr)
62
+ if isinstance(obj, torch.nn.Module):
63
+ print_named_params(obj, attr)
64
+ except Exception as e:
65
+ print(f"⚠️ Could not inspect {attr}: {e}")
66
+
67
+ # Print LoRA file contents
68
+ def print_lora_checkpoint_keys(path):
69
+ try:
70
+ lora_checkpoint = torch.load(path, map_location="cpu")
71
+ print("\n📦 LoRA Checkpoint Keys:")
72
+ for k, v in lora_checkpoint.items():
73
  print(f"{k}: {v.shape}")
74
+ except Exception as e:
75
+ print(f"❌ Failed to load LoRA for inspection: {e}")
76
 
77
+ # Step 1: Explore the pipeline model structure
78
+ print_all_pipeline_keys(pipe)
 
 
79
 
80
+ # Step 2: Download LoRA file
81
  lora_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
82
 
83
+ # Step 3: Print LoRA checkpoint keys
84
+ print_lora_checkpoint_keys(lora_path)
 
 
 
 
 
 
85
 
86
+ # Step 4: Load and apply the LoRA
87
  try:
88
  pipe.load_lora_weights(lora_path, adapter_name="main")
89
  pipe.set_adapters(["main"], adapter_weights=[1.0])