File size: 13,072 Bytes
dc155d4
 
 
238775c
dc155d4
 
 
fe70d6a
dc155d4
 
 
 
 
 
 
048bf77
dc155d4
 
d3dcfc1
 
 
 
dc155d4
ed674ec
d3dcfc1
451b71c
dc155d4
 
 
 
048bf77
dc155d4
048bf77
 
 
 
dc155d4
fe70d6a
d4fdc43
a40e3c4
 
 
 
 
 
 
 
 
 
fe70d6a
dc155d4
 
 
048bf77
 
 
 
 
736f1ae
dc155d4
 
 
 
 
 
 
 
0f291d9
048bf77
dc155d4
9b523b0
 
 
 
f00b269
 
 
 
 
d3dcfc1
 
 
 
 
 
 
 
f00b269
fa876a9
d3dcfc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c84409e
 
 
 
 
 
 
 
 
28b4fbc
c84409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3dcfc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b523b0
f00b269
 
 
 
 
 
 
 
 
9b523b0
 
 
f00b269
9b523b0
 
 
 
f00b269
9b523b0
 
 
 
 
f00b269
9b523b0
 
 
f00b269
9b523b0
 
 
 
f00b269
9b523b0
 
 
f00b269
 
dc155d4
9b523b0
dc155d4
 
 
048bf77
dc155d4
048bf77
dc155d4
 
 
 
 
 
 
 
 
 
 
5962f83
 
 
 
 
 
dc155d4
 
5962f83
 
048bf77
dc155d4
 
5962f83
dc155d4
 
 
5962f83
 
dc155d4
 
048bf77
dc155d4
 
 
 
5962f83
d3dcfc1
 
5962f83
65c41e4
 
 
 
c84409e
 
a70453e
dc155d4
 
 
5962f83
dc155d4
0f291d9
cb05541
dc155d4
 
0f291d9
048bf77
dc155d4
 
 
 
 
0f291d9
048bf77
 
dc155d4
 
 
 
 
 
f1ee2b7
048bf77
 
dc155d4
 
 
fe70d6a
 
 
f945a0d
fe70d6a
5ab6322
 
 
 
 
 
 
 
 
fe70d6a
 
 
dc155d4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
import logging
# Actual demo code
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_

import ffmpeg
import tempfile
import os


MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"


LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)

vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(MODEL_ID,
    transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    vae=vae,
    torch_dtype=torch.bfloat16,
).to('cuda')


for i in range(3): 
    gc.collect()
    torch.cuda.synchronize() 
    torch.cuda.empty_cache()

optimize_pipeline_(pipe,
    prompt='prompt',
    height=LANDSCAPE_HEIGHT,
    width=LANDSCAPE_WIDTH,
    num_frames=MAX_FRAMES_MODEL,
)


default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"

from huggingface_hub import HfApi, upload_file
import os
import uuid

import os
import uuid
import logging
from datetime import datetime
from huggingface_hub import HfApi, upload_file
import tempfile
import random
import logging
from datetime import datetime
import uuid
import numpy as np
import torch
import ffmpeg

HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/WanTextExp")
def upload_to_hf(video_path: str, summary_text: str):
    api = HfApi()
    # Create date-based folder
    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"WANT2V-EXP-upload_{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}/{unique_subfolder}"
    logging.info(f"Uploading to HF folder: {hf_folder}")

    # Upload video
    video_filename = os.path.basename(video_path)
    video_hf_path = f"{hf_folder}/{video_filename}"
    upload_file(
        path_or_fileobj=video_path,
        path_in_repo=video_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded video: {video_hf_path}")

    # Upload summary
    summary_file = os.path.join(tempfile.gettempdir(), "summary.txt")
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(summary_text)

    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded summary: {summary_hf_path}")

    return hf_folder


import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid



def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
    """
    Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.

    Args:
        input_video_path (str): Path to the original video.
        summary_text (str): Text summary to upload alongside the video.

    Returns:
        str: Hugging Face folder path where the video and summary were uploaded.
    """
    logging.info(f"Upscaling video to 4K for upload: {input_video_path}")

    # Create a temporary file for the upscaled video
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
        upscaled_path = tmp_upscaled.name

    # FFmpeg upscale command
    cmd = [
        "ffmpeg",
        "-i", input_video_path,
        "-vf", "scale=3840:2160:flags=lanczos",
        "-c:v", "libx264",
        "-crf", "18",
        "-preset", "slow",
        "-y",
        upscaled_path,
    ]
    try:
        subprocess.run(cmd, check=True, capture_output=True)
        logging.info(f"✅ Upscaled video created at: {upscaled_path}")
    except subprocess.CalledProcessError as e:
        logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
        raise

    # Create a date-based folder on HF
    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}/{unique_subfolder}"

    # Upload video
    video_filename = os.path.basename(input_video_path)
    video_hf_path = f"{hf_folder}/{video_filename}"
    upload_file(
        path_or_fileobj=upscaled_path,
        path_in_repo=video_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")

    # Upload summary.txt
    summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(summary_text)

    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")

    # Cleanup temporary files
    os.remove(upscaled_path)
    os.remove(summary_file)

    return hf_folder



def save_video_ffmpeg(frames: list, video_path: str, fps: int = FIXED_FPS):
    h, w, c = frames[0].shape
    process = (
        ffmpeg
        .input(
            'pipe:', format='rawvideo', pix_fmt='rgb24',
            s=f'{w}x{h}', framerate=fps
        )
        .output(
            video_path,
            pix_fmt='yuv420p',
            vcodec='libx264',
            crf=18,
            preset='slow'
        )
        .overwrite_output()
        .run_async(pipe_stdin=True)
    )
    for frame in frames:
        process.stdin.write(frame.astype(np.uint8).tobytes())
    process.stdin.close()
    process.wait()
    logging.info(f"✅ Video saved to {video_path}")



def upload_to_hf0(video_path, summary_text):
    api = HfApi()
    
    # Create a date-based folder (YYYY-MM-DD)
    today_str = datetime.now().strftime("%Y-%m-%d")
    date_folder = today_str
    
    # Generate a unique subfolder for this upload
    unique_subfolder = f"WANT2V-EXP-upload_{uuid.uuid4().hex[:8]}"
    hf_folder = f"{date_folder}/{unique_subfolder}"
    logging.info(f"Uploading files to HF folder: {hf_folder} in repo {HF_MODEL}")

    # Upload video
    video_filename = os.path.basename(video_path)
    video_hf_path = f"{hf_folder}/{video_filename}"
    upload_file(
        path_or_fileobj=video_path,
        path_in_repo=video_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded video to HF: {video_hf_path}")

    # Upload summary.txt
    summary_file = "/tmp/summary.txt"
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(summary_text)

    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")

    return hf_folder

    
def get_duration(
    prompt,
    negative_prompt,
    duration_seconds,
    guidance_scale,
    guidance_scale_2,
    steps,
    seed,
    randomize_seed,
    progress,
):
    return steps * 15

@spaces.GPU(duration=get_duration)
def generate_video(
    prompt,
    negative_prompt=default_negative_prompt,
    duration_seconds=MAX_DURATION,
    guidance_scale=1,
    guidance_scale_2=3,
    steps=4,
    seed=42,
    randomize_seed=False,
    progress=gr.Progress(track_tqdm=True),
):
    print("Prompt:", prompt)

    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    # Generate frames
    output_frames_list = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=LANDSCAPE_HEIGHT,
        width=LANDSCAPE_WIDTH,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
    ).frames[0]

  
  
    video_path = os.path.join(tempfile.gettempdir(), f"video_{current_seed}.mp4")

    # Export frames to video (this is the high-quality video you see in Gradio)
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)


    #hf_folder = upload_to_hf(video_path, prompt)
    upscale_and_upload_4k(video_path,prompt)
   

    return video_path, current_seed


with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.2 T2V (14B) with Lightning LoRA")
    gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Wan 2.2 Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
            duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        prompt_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            [
                "POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
            ],
            [
                "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
            ],
            [
                "A cinematic shot of a boat sailing on a calm sea at sunset.",
            ],
            [
                "Drone footage flying over a futuristic city with flying cars.",
            ],
        ],
        inputs=[prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch(mcp_server=True)