Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,072 Bytes
dc155d4 238775c dc155d4 fe70d6a dc155d4 048bf77 dc155d4 d3dcfc1 dc155d4 ed674ec d3dcfc1 451b71c dc155d4 048bf77 dc155d4 048bf77 dc155d4 fe70d6a d4fdc43 a40e3c4 fe70d6a dc155d4 048bf77 736f1ae dc155d4 0f291d9 048bf77 dc155d4 9b523b0 f00b269 d3dcfc1 f00b269 fa876a9 d3dcfc1 c84409e 28b4fbc c84409e d3dcfc1 9b523b0 f00b269 9b523b0 f00b269 9b523b0 f00b269 9b523b0 f00b269 9b523b0 f00b269 9b523b0 f00b269 9b523b0 f00b269 dc155d4 9b523b0 dc155d4 048bf77 dc155d4 048bf77 dc155d4 5962f83 dc155d4 5962f83 048bf77 dc155d4 5962f83 dc155d4 5962f83 dc155d4 048bf77 dc155d4 5962f83 d3dcfc1 5962f83 65c41e4 c84409e a70453e dc155d4 5962f83 dc155d4 0f291d9 cb05541 dc155d4 0f291d9 048bf77 dc155d4 0f291d9 048bf77 dc155d4 f1ee2b7 048bf77 dc155d4 fe70d6a f945a0d fe70d6a 5ab6322 fe70d6a dc155d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
import logging
# Actual demo code
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
import ffmpeg
import tempfile
import os
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
vae=vae,
torch_dtype=torch.bfloat16,
).to('cuda')
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
optimize_pipeline_(pipe,
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
from huggingface_hub import HfApi, upload_file
import os
import uuid
import os
import uuid
import logging
from datetime import datetime
from huggingface_hub import HfApi, upload_file
import tempfile
import random
import logging
from datetime import datetime
import uuid
import numpy as np
import torch
import ffmpeg
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/WanTextExp")
def upload_to_hf(video_path: str, summary_text: str):
api = HfApi()
# Create date-based folder
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"WANT2V-EXP-upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
logging.info(f"Uploading to HF folder: {hf_folder}")
# Upload video
video_filename = os.path.basename(video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=video_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded video: {video_hf_path}")
# Upload summary
summary_file = os.path.join(tempfile.gettempdir(), "summary.txt")
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary: {summary_hf_path}")
return hf_folder
import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid
def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
"""
Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.
Args:
input_video_path (str): Path to the original video.
summary_text (str): Text summary to upload alongside the video.
Returns:
str: Hugging Face folder path where the video and summary were uploaded.
"""
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
# Create a temporary file for the upscaled video
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
upscaled_path = tmp_upscaled.name
# FFmpeg upscale command
cmd = [
"ffmpeg",
"-i", input_video_path,
"-vf", "scale=3840:2160:flags=lanczos",
"-c:v", "libx264",
"-crf", "18",
"-preset", "slow",
"-y",
upscaled_path,
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
raise
# Create a date-based folder on HF
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
# Upload video
video_filename = os.path.basename(input_video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=upscaled_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
# Cleanup temporary files
os.remove(upscaled_path)
os.remove(summary_file)
return hf_folder
def save_video_ffmpeg(frames: list, video_path: str, fps: int = FIXED_FPS):
h, w, c = frames[0].shape
process = (
ffmpeg
.input(
'pipe:', format='rawvideo', pix_fmt='rgb24',
s=f'{w}x{h}', framerate=fps
)
.output(
video_path,
pix_fmt='yuv420p',
vcodec='libx264',
crf=18,
preset='slow'
)
.overwrite_output()
.run_async(pipe_stdin=True)
)
for frame in frames:
process.stdin.write(frame.astype(np.uint8).tobytes())
process.stdin.close()
process.wait()
logging.info(f"✅ Video saved to {video_path}")
def upload_to_hf0(video_path, summary_text):
api = HfApi()
# Create a date-based folder (YYYY-MM-DD)
today_str = datetime.now().strftime("%Y-%m-%d")
date_folder = today_str
# Generate a unique subfolder for this upload
unique_subfolder = f"WANT2V-EXP-upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{date_folder}/{unique_subfolder}"
logging.info(f"Uploading files to HF folder: {hf_folder} in repo {HF_MODEL}")
# Upload video
video_filename = os.path.basename(video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=video_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = "/tmp/summary.txt"
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
return hf_folder
def get_duration(
prompt,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
steps,
seed,
randomize_seed,
progress,
):
return steps * 15
@spaces.GPU(duration=get_duration)
def generate_video(
prompt,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=3,
steps=4,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
print("Prompt:", prompt)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# Generate frames
output_frames_list = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
video_path = os.path.join(tempfile.gettempdir(), f"video_{current_seed}.mp4")
# Export frames to video (this is the high-quality video you see in Gradio)
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
#hf_folder = upload_to_hf(video_path, prompt)
upscale_and_upload_4k(video_path,prompt)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 T2V (14B) with Lightning LoRA")
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Wan 2.2 Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
ui_inputs = [
prompt_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
],
[
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
],
[
"A cinematic shot of a boat sailing on a calm sea at sunset.",
],
[
"Drone footage flying over a futuristic city with flying cars.",
],
],
inputs=[prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True)
|