Spaces:
Paused
Paused
File size: 8,614 Bytes
3610958 f2dc9a9 70a9091 65b5bb7 b811178 f2dc9a9 70a9091 b811178 f2dc9a9 b811178 f2dc9a9 b811178 9cb7778 b811178 9cb7778 b811178 1bf3e32 b811178 79b5cb9 b811178 79b5cb9 b811178 79b5cb9 b811178 9b7ce8d e81aa63 70a9091 3610958 b811178 70a9091 aa2dfbe 70a9091 3610958 70a9091 3610958 b811178 1bf3e32 3610958 b811178 1bf3e32 70a9091 9cb7778 583dc73 70a9091 e81aa63 70a9091 b811178 70a9091 b811178 70a9091 3610958 70a9091 3610958 b811178 1bf3e32 3610958 b811178 1bf3e32 70a9091 b811178 6f02b46 b811178 70a9091 3610958 70a9091 b811178 9cb7778 3610958 70a9091 3610958 70a9091 9cb7778 583dc73 e81aa63 9cb7778 70a9091 b811178 70a9091 b811178 9cb7778 3610958 70a9091 3610958 70a9091 9cb7778 583dc73 e81aa63 9cb7778 70a9091 b811178 70a9091 e81aa63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import spaces
import os
import subprocess
import tempfile
import glob
import gc
from huggingface_hub import snapshot_download
import gradio as gr
from PIL import Image
import numpy as np
# -------- Model Download --------
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# -------- Constants --------
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 704
DEFAULT_W_SLIDER_VALUE = 1280
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280
# -------- Helpers --------
def _calculate_new_dimensions(pil_image):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(NEW_FORMULA_MAX_AREA * aspect_ratio))
calc_w = round(np.sqrt(NEW_FORMULA_MAX_AREA / aspect_ratio))
calc_h = max(MOD_VALUE, (calc_h // MOD_VALUE) * MOD_VALUE)
calc_w = max(MOD_VALUE, (calc_w // MOD_VALUE) * MOD_VALUE)
new_h = int(np.clip(calc_h, SLIDER_MIN_H, (SLIDER_MAX_H // MOD_VALUE) * MOD_VALUE))
new_w = int(np.clip(calc_w, SLIDER_MIN_W, (SLIDER_MAX_W // MOD_VALUE) * MOD_VALUE))
return new_h, new_w
def handle_image_upload_for_dims(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
if hasattr(uploaded_pil_image, 'shape'):
pil_image = Image.fromarray(uploaded_pil_image).convert("RGB")
else:
pil_image = uploaded_pil_image
new_h, new_w = _calculate_new_dimensions(pil_image)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(prompt, size, duration_seconds, steps, progress):
if duration_seconds >= 3:
return 220
elif steps > 35 and duration_seconds >= 2:
return 180
elif steps < 35 or duration_seconds < 2:
return 105
else:
return 90
def find_latest_mp4():
files = glob.glob("*.mp4")
if not files:
return None
latest_file = max(files, key=os.path.getctime)
return latest_file
# -------- Generation Functions --------
@spaces.GPU(duration=get_duration)
def generate_t2v(prompt, size="1280*704", duration_seconds=5, steps=25, progress=gr.Progress(track_tqdm=True)):
if not prompt.strip():
return None, None, "Please enter a prompt."
temp_dir = tempfile.mkdtemp()
# Ensure size is multiples of MOD_VALUE (h*w)
try:
h, w = size.lower().replace(" ", "").split("*")
h = max(MOD_VALUE, (int(h) // MOD_VALUE) * MOD_VALUE)
w = max(MOD_VALUE, (int(w) // MOD_VALUE) * MOD_VALUE)
size = f"{h}*{w}"
except Exception:
size = f"{DEFAULT_H_SLIDER_VALUE}*{DEFAULT_W_SLIDER_VALUE}"
cmd = [
"python", "generate.py",
"--task", "ti2v-5B",
"--size", size,
"--ckpt_dir", ckpt_dir,
"--offload_model", "True",
"--sample_steps", str(int(steps)),
"--convert_model_dtype",
"--t5_cpu",
"--prompt", prompt
]
print(f"[T2V] Running command: {' '.join(cmd)}")
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
return None, None, f"Error during T2V generation: {e}"
gc.collect()
video_file = find_latest_mp4()
if video_file is None:
return None, None, "Generation finished but no video file found."
dest_path = os.path.join(temp_dir, os.path.basename(video_file))
os.rename(video_file, dest_path)
download_link = f"<a href='{os.path.basename(dest_path)}' download>π₯ Download Video</a>"
return dest_path, download_link, "Text-to-Video generated successfully!"
@spaces.GPU(duration=get_duration)
def generate_i2v(image, prompt, size="1280*704", duration_seconds=5, steps=25, progress=gr.Progress(track_tqdm=True)):
if image is None or not prompt.strip():
return None, None, "Please upload an image and enter a prompt."
temp_dir = tempfile.mkdtemp()
try:
h, w = size.lower().replace(" ", "").split("*")
h = max(MOD_VALUE, (int(h) // MOD_VALUE) * MOD_VALUE)
w = max(MOD_VALUE, (int(w) // MOD_VALUE) * MOD_VALUE)
size = f"{h}*{w}"
except Exception:
size = f"{DEFAULT_H_SLIDER_VALUE}*{DEFAULT_W_SLIDER_VALUE}"
image_path = os.path.join(temp_dir, "input.jpg")
Image.fromarray(image).save(image_path)
cmd = [
"python", "generate.py",
"--task", "ti2v-5B",
"--size", size,
"--ckpt_dir", ckpt_dir,
"--offload_model", "True",
"--convert_model_dtype",
"--t5_cpu",
"--image", image_path,
"--prompt", prompt
]
print(f"[I2V] Running command: {' '.join(cmd)}")
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
return None, None, f"Error during I2V generation: {e}"
gc.collect()
video_file = find_latest_mp4()
if video_file is None:
return None, None, "Generation finished but no video file found."
dest_path = os.path.join(temp_dir, os.path.basename(video_file))
os.rename(video_file, dest_path)
download_link = f"<a href='{os.path.basename(dest_path)}' download>π₯ Download Video</a>"
return dest_path, download_link, "Image-to-Video generated successfully!"
# -------- Gradio UI --------
with gr.Blocks() as demo:
gr.Markdown("## π₯ Wan2.2-TI2V-5B Video Generator")
gr.Markdown("Choose **Text-to-Video** or **Image-to-Video** mode below.")
with gr.Tab("Text-to-Video"):
t2v_prompt = gr.Textbox(
label="Prompt",
value="Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage"
)
t2v_size = gr.Textbox(label="Video Size (HxW)", value=f"{DEFAULT_H_SLIDER_VALUE}*{DEFAULT_W_SLIDER_VALUE}")
t2v_duration = gr.Number(label="Video Length (seconds)", value=5)
t2v_steps = gr.Number(label="Inference Steps", value=25)
t2v_btn = gr.Button("Generate from Text")
t2v_video = gr.Video(label="Generated Video")
t2v_download = gr.HTML()
t2v_status = gr.Textbox(label="Status")
t2v_btn.click(
generate_t2v,
[t2v_prompt, t2v_size, t2v_duration, t2v_steps],
[t2v_video, t2v_download, t2v_status]
)
with gr.Tab("Image-to-Video"):
i2v_image = gr.Image(type="numpy", label="Upload Image")
i2v_prompt = gr.Textbox(
label="Prompt",
value=(
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. "
"The fluffy-furred feline gazes directly at the camera with a relaxed expression. "
"Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, "
"and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, "
"as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's "
"intricate details and the refreshing atmosphere of the seaside."
)
)
i2v_size = gr.Textbox(label="Video Size (HxW)", value=f"{DEFAULT_H_SLIDER_VALUE}*{DEFAULT_W_SLIDER_VALUE}")
i2v_duration = gr.Number(label="Video Length (seconds)", value=5)
i2v_steps = gr.Number(label="Inference Steps", value=25)
i2v_btn = gr.Button("Generate from Image")
i2v_video = gr.Video(label="Generated Video")
i2v_download = gr.HTML()
i2v_status = gr.Textbox(label="Status")
i2v_btn.click(
generate_i2v,
[i2v_image, i2v_prompt, i2v_size, i2v_duration, i2v_steps],
[i2v_video, i2v_download, i2v_status]
)
# Auto adjust size on image upload for i2v
i2v_image.upload(
fn=handle_image_upload_for_dims,
inputs=[i2v_image, i2v_size, i2v_size],
outputs=[i2v_size, i2v_size]
)
i2v_image.clear(
fn=handle_image_upload_for_dims,
inputs=[i2v_image, i2v_size, i2v_size],
outputs=[i2v_size, i2v_size]
)
if __name__ == "__main__":
demo.launch()
|