File size: 1,633 Bytes
cac26d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from transformers import AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling, Trainer, TrainingArguments
from datasets import load_dataset

# Load the pre-trained model and tokenizer
model_name = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Add padding token if not present
if tokenizer.pad_token is None:
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

# Resize model embeddings to accommodate the new padding token
model = AutoModelForCausalLM.from_pretrained(model_name)
model.resize_token_embeddings(len(tokenizer))

# Load your dataset


dataset = load_dataset('text', data_files={'train': '/kaggle/input/rahul7star-data1/data.txt'})

# Tokenize the dataset
def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)

tokenized_datasets = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"])

# Set up data collator and trainer
data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer,
    mlm=False,
)

training_args = TrainingArguments(
    output_dir="./results",
    overwrite_output_dir=True,
    num_train_epochs=3,
    per_device_train_batch_size=4,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=tokenized_datasets["train"],
)

# Train the model
trainer.train()

# Save the fine-tuned model and tokenizer
model.save_pretrained("/kaggle/working/finetuned_model")
tokenizer.save_pretrained("/kaggle/working/finetuned_tokenizer")