File size: 10,208 Bytes
a26e606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import gradio as gr
import torch
from models.text_gen import TextGenerator
from models.summarizer import TextSummarizer
from models.image_gen import ImageGenerator
from models.audio_gen import AudioGenerator
from models.code_gen import CodeGenerator

# Debug GPU availability
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"CUDA device count: {torch.cuda.device_count()}")
    print(f"Current CUDA device: {torch.cuda.current_device()}")
    print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
    print(f"CUDA device properties: {torch.cuda.get_device_properties(0)}")

# Initialize the models
text_generator = TextGenerator()
text_summarizer = TextSummarizer()
image_generator = ImageGenerator()
audio_generator = AudioGenerator()
code_generator = CodeGenerator()

def generate_text(prompt, max_length, temperature, top_p):
    try:
        generated_text = text_generator.generate_text(
            prompt=prompt,
            max_length=max_length,
            temperature=temperature,
            top_p=top_p
        )
        return generated_text
    except Exception as e:
        return f"Error generating text: {str(e)}"

def summarize_text(text, max_length, min_length):
    try:
        summary = text_summarizer.summarize(
            text=text,
            max_length=max_length,
            min_length=min_length
        )
        return summary
    except Exception as e:
        return f"Error generating summary: {str(e)}"

def generate_image(prompt, num_steps, guidance_scale):
    try:
        image = image_generator.generate_image(
            prompt=prompt,
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale
        )
        return image
    except Exception as e:
        return f"Error generating image: {str(e)}"

def generate_audio(text):
    try:
        audio, sample_rate = audio_generator.generate_audio(
            text=text
        )
        return (sample_rate, audio)
    except Exception as e:
        return f"Error generating audio: {str(e)}"

def generate_code(prompt, max_length, temperature, top_p):
    try:
        code = code_generator.generate_code(
            prompt=prompt,
            max_length=max_length,
            temperature=temperature,
            top_p=top_p
        )
        return code
    except Exception as e:
        return f"Error generating code: {str(e)}"

# Create the Gradio interface
with gr.Blocks(title="GenAI Content Studio") as app:
    gr.Markdown("# 🎨 GenAI Content Studio")
    gr.Markdown("### Free and Open-Source AI Content Generation")
    
    with gr.Tabs():
        with gr.TabItem("Text Generation"):
            with gr.Row():
                with gr.Column():
                    prompt = gr.Textbox(
                        label="Enter your prompt",
                        placeholder="Type your text here...",
                        lines=3
                    )
                    
                    with gr.Row():
                        max_length = gr.Slider(
                            minimum=50,
                            maximum=500,
                            value=100,
                            step=50,
                            label="Max Length"
                        )
                        temperature = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.7,
                            step=0.1,
                            label="Temperature"
                        )
                        top_p = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.9,
                            step=0.1,
                            label="Top P"
                        )
                    
                    generate_btn = gr.Button("Generate Text")
                
                with gr.Column():
                    output = gr.Textbox(
                        label="Generated Text",
                        lines=10,
                        interactive=False
                    )
            
            generate_btn.click(
                fn=generate_text,
                inputs=[prompt, max_length, temperature, top_p],
                outputs=output
            )

        with gr.TabItem("Text Summarization"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(
                        label="Enter text to summarize",
                        placeholder="Paste your text here...",
                        lines=10
                    )
                    
                    with gr.Row():
                        max_summary_length = gr.Slider(
                            minimum=50,
                            maximum=200,
                            value=130,
                            step=10,
                            label="Max Summary Length"
                        )
                        min_summary_length = gr.Slider(
                            minimum=10,
                            maximum=100,
                            value=30,
                            step=10,
                            label="Min Summary Length"
                        )
                    
                    summarize_btn = gr.Button("Summarize Text")
                
                with gr.Column():
                    summary_output = gr.Textbox(
                        label="Generated Summary",
                        lines=5,
                        interactive=False
                    )
            
            summarize_btn.click(
                fn=summarize_text,
                inputs=[text_input, max_summary_length, min_summary_length],
                outputs=summary_output
            )
        
        with gr.TabItem("Image Generation"):
            with gr.Row():
                with gr.Column():
                    image_prompt = gr.Textbox(
                        label="Enter your image prompt",
                        placeholder="Describe the image you want to generate...",
                        lines=3
                    )
                    
                    with gr.Row():
                        num_steps = gr.Slider(
                            minimum=20,
                            maximum=100,
                            value=50,
                            step=10,
                            label="Number of Steps"
                        )
                        guidance_scale = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="Guidance Scale"
                        )
                    
                    generate_image_btn = gr.Button("Generate Image")
                
                with gr.Column():
                    image_output = gr.Image(
                        label="Generated Image",
                        type="pil"
                    )
            
            generate_image_btn.click(
                fn=generate_image,
                inputs=[image_prompt, num_steps, guidance_scale],
                outputs=image_output
            )

        with gr.TabItem("Audio Generation"):
            with gr.Row():
                with gr.Column():
                    audio_text = gr.Textbox(
                        label="Enter text to convert to speech",
                        placeholder="Type what you want to hear...",
                        lines=3
                    )
                    
                    generate_audio_btn = gr.Button("Generate Audio")
                
                with gr.Column():
                    audio_output = gr.Audio(
                        label="Generated Audio",
                        type="numpy"
                    )
            
            generate_audio_btn.click(
                fn=generate_audio,
                inputs=[audio_text],
                outputs=audio_output
            )
        
        with gr.TabItem("Code Generation"):
            with gr.Row():
                with gr.Column():
                    code_prompt = gr.Textbox(
                        label="Enter your code prompt",
                        placeholder="Describe the code you want to generate...",
                        lines=3
                    )
                    
                    with gr.Row():
                        max_length = gr.Slider(
                            minimum=50,
                            maximum=500,
                            value=100,
                            step=50,
                            label="Max Length"
                        )
                        temperature = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.7,
                            step=0.1,
                            label="Temperature"
                        )
                        top_p = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.9,
                            step=0.1,
                            label="Top P"
                        )
                    
                    generate_code_btn = gr.Button("Generate Code")
                
                with gr.Column():
                    code_output = gr.Code(
                        label="Generated Code",
                        language="python"
                    )
            
            generate_code_btn.click(
                fn=generate_code,
                inputs=[code_prompt, max_length, temperature, top_p],
                outputs=code_output
            )

if __name__ == "__main__":
    app.launch()