root
commited on
Commit
·
c6e5246
1
Parent(s):
2d805fd
test mcp server gradio
Browse files- .gitignore +1 -0
- app.py +88 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.ipynb_checkpoints/
|
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
+
from transformers import pipeline
|
4 |
+
import json
|
5 |
+
|
6 |
+
server_name = "0.0.0.0"
|
7 |
+
|
8 |
+
server_port = 8890
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner")
|
11 |
+
model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner")
|
12 |
+
|
13 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
14 |
+
|
15 |
+
def group_cat(entities):
|
16 |
+
categories = {}
|
17 |
+
for item in entities:
|
18 |
+
group = item.get('entity_group')
|
19 |
+
if group not in categories:
|
20 |
+
categories[group] = [item]
|
21 |
+
else:
|
22 |
+
categories[group].append(item)
|
23 |
+
return categories
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def ner(text: str) -> str:
|
29 |
+
"""
|
30 |
+
Searches the input text for named entities and returns them organized by category.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
text (str): The input text to analyze.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
str: A json string representing dictionary where each key is a named entity category (e.g., 'PER', 'ORG', 'LOC', etc.), and the corresponding value is a list of entities found in the text under that category.
|
37 |
+
"""
|
38 |
+
max_len = tokenizer.model_max_length
|
39 |
+
stride = 50
|
40 |
+
|
41 |
+
# Tokenizza con overflow per gestire testi lunghi
|
42 |
+
inputs = tokenizer(
|
43 |
+
text,
|
44 |
+
return_overflowing_tokens=True,
|
45 |
+
stride=stride,
|
46 |
+
max_length=max_len,
|
47 |
+
truncation=True,
|
48 |
+
return_offsets_mapping=True,
|
49 |
+
padding=False
|
50 |
+
)
|
51 |
+
|
52 |
+
all_entities = []
|
53 |
+
seen = set() # Per deduplicare (word, start, end)
|
54 |
+
|
55 |
+
for input_ids in inputs["input_ids"]:
|
56 |
+
chunk_text = tokenizer.decode(input_ids, skip_special_tokens=True)
|
57 |
+
chunk_entities = nlp(chunk_text)
|
58 |
+
|
59 |
+
for ent in chunk_entities:
|
60 |
+
key = (ent["word"], ent["start"], ent["end"])
|
61 |
+
if key not in seen:
|
62 |
+
seen.add(key)
|
63 |
+
all_entities.append(ent)
|
64 |
+
|
65 |
+
|
66 |
+
ner_results =group_cat(all_entities)
|
67 |
+
|
68 |
+
cleaned = {}
|
69 |
+
for category, items in ner_results.items():
|
70 |
+
cleaned[category] = {}
|
71 |
+
for ent in items:
|
72 |
+
cleaned[category][ent["word"]] = float(ent["score"])
|
73 |
+
|
74 |
+
dict_ner = json.dumps(cleaned, indent=2, separators=(',', ': '), ensure_ascii=False)
|
75 |
+
return dict_ner
|
76 |
+
|
77 |
+
# Create a standard Gradio interface
|
78 |
+
demo = gr.Interface(
|
79 |
+
fn=ner,
|
80 |
+
inputs=["text"],
|
81 |
+
outputs="text",
|
82 |
+
title="NER",
|
83 |
+
description="Detect named entity within the text in input using the model Babelscape/wikineural - This interface works as MCP server as well."
|
84 |
+
)
|
85 |
+
|
86 |
+
# Launch both the Gradio web interface and the MCP server
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.launch(server_name = server_name, server_port=server_port, mcp_server=True,)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.31.0
|
2 |
+
transformers==4.50.3
|
3 |
+
json
|