V6 / app /routes /chat_api.py
bibibi12345's picture
complete refactor
3cc1b9e
import asyncio
import json # Needed for error streaming
from fastapi import APIRouter, Depends, Request # Added Request
from fastapi.responses import JSONResponse, StreamingResponse
from typing import List, Dict, Any
# Google and OpenAI specific imports
from google.genai import types
from google import genai
# Local module imports (now absolute from app/ perspective)
from models import OpenAIRequest, OpenAIMessage
from auth import get_api_key
# from main import credential_manager # Removed, will use request.app.state
import config as app_config
from vertex_ai_init import VERTEX_EXPRESS_MODELS
from message_processing import (
create_gemini_prompt,
create_encrypted_gemini_prompt,
create_encrypted_full_gemini_prompt
)
from api_helpers import (
create_generation_config,
create_openai_error_response,
execute_gemini_call
)
router = APIRouter()
@router.post("/v1/chat/completions")
async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)):
try:
# Access credential_manager from app state
credential_manager_instance = fastapi_request.app.state.credential_manager
is_auto_model = request.model.endswith("-auto")
is_grounded_search = request.model.endswith("-search")
is_encrypted_model = request.model.endswith("-encrypt")
is_encrypted_full_model = request.model.endswith("-encrypt-full")
is_nothinking_model = request.model.endswith("-nothinking")
is_max_thinking_model = request.model.endswith("-max")
base_model_name = request.model
if is_auto_model: base_model_name = request.model.replace("-auto", "")
elif is_grounded_search: base_model_name = request.model.replace("-search", "")
elif is_encrypted_model: base_model_name = request.model.replace("-encrypt", "")
elif is_encrypted_full_model: base_model_name = request.model.replace("-encrypt-full", "")
elif is_nothinking_model: base_model_name = request.model.replace("-nothinking","")
elif is_max_thinking_model: base_model_name = request.model.replace("-max","")
generation_config = create_generation_config(request)
client_to_use = None
express_api_key_val = app_config.VERTEX_EXPRESS_API_KEY_VAL
if express_api_key_val and base_model_name in VERTEX_EXPRESS_MODELS:
try:
client_to_use = genai.Client(vertexai=True, api_key=express_api_key_val)
print(f"INFO: Using Vertex Express Mode for model {base_model_name}.")
except Exception as e:
print(f"ERROR: Vertex Express Mode client init failed: {e}. Falling back.")
client_to_use = None
if client_to_use is None:
rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()
if rotated_credentials and rotated_project_id:
try:
client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="us-central1")
print(f"INFO: Using rotated credential for project: {rotated_project_id}")
except Exception as e:
print(f"ERROR: Rotated credential client init failed: {e}. Falling back.")
client_to_use = None
if client_to_use is None:
print("ERROR: No Vertex AI client could be initialized via Express Mode or Rotated Credentials.")
return JSONResponse(status_code=500, content=create_openai_error_response(500, "Vertex AI client not available. Ensure credentials are set up correctly (env var or files).", "server_error"))
encryption_instructions = ["// Protocol Instructions Placeholder //"]
if is_auto_model:
print(f"Processing auto model: {request.model}")
attempts = [
{"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c},
{"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": encryption_instructions}},
{"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c}
]
last_err = None
for attempt in attempts:
print(f"Auto-mode attempting: '{attempt['name']}'")
current_gen_config = attempt["config_modifier"](generation_config.copy())
try:
return await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request)
except Exception as e_auto:
last_err = e_auto
print(f"Auto-attempt '{attempt['name']}' failed: {e_auto}")
await asyncio.sleep(1)
print(f"All auto attempts failed. Last error: {last_err}")
err_msg = f"All auto-mode attempts failed for {request.model}. Last error: {str(last_err)}"
if not request.stream and last_err:
return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error"))
elif request.stream:
async def final_error_stream():
err_content = create_openai_error_response(500, err_msg, "server_error")
yield f"data: {json.dumps(err_content)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(final_error_stream(), media_type="text/event-stream")
return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error"))
else:
current_prompt_func = create_gemini_prompt
if is_grounded_search:
search_tool = types.Tool(google_search=types.GoogleSearch())
generation_config["tools"] = [search_tool]
elif is_encrypted_model:
generation_config["system_instruction"] = encryption_instructions
current_prompt_func = create_encrypted_gemini_prompt
elif is_encrypted_full_model:
generation_config["system_instruction"] = encryption_instructions
current_prompt_func = create_encrypted_full_gemini_prompt
elif is_nothinking_model:
generation_config["thinking_config"] = {"thinking_budget": 0}
elif is_max_thinking_model:
generation_config["thinking_config"] = {"thinking_budget": 24576}
return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request)
except Exception as e:
error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}"
print(error_msg)
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))