Rajan Singh commited on
Commit
f09166e
·
1 Parent(s): d8ea436
Files changed (1) hide show
  1. src/streamlit_app.py +14 -24
src/streamlit_app.py CHANGED
@@ -1,31 +1,21 @@
1
  import streamlit as st
2
- import requests
3
- import os
4
 
5
  st.title("Uzmi GPT - Romantic Quote Generator")
6
 
7
- # Input prompt
8
- user_input = st.text_area("Enter your prompt:", "A romantic love quote about forever:")
 
 
 
9
 
10
- # Button to trigger prediction
11
- if st.button("Generate"):
12
- API_URL = "https://api-inference.huggingface.co/models/rajan3208/uzmi-gpt"
13
- headers = {
14
- "Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"
15
- }
16
-
17
- payload = {"inputs": user_input}
18
 
19
- with st.spinner("Generating..."):
20
- response = requests.post(API_URL, headers=headers, json=payload)
21
 
22
- if response.status_code == 200:
23
- try:
24
- generated_text = response.json()[0]["generated_text"]
25
- st.success("Generated Text:")
26
- st.write(generated_text)
27
- except Exception as e:
28
- st.error("Could not parse response.")
29
- st.json(response.json())
30
- else:
31
- st.error(f"Error {response.status_code}: {response.text}")
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
  st.title("Uzmi GPT - Romantic Quote Generator")
6
 
7
+ @st.cache_resource
8
+ def load_model():
9
+ tokenizer = AutoTokenizer.from_pretrained("rajan3208/uzmi-gpt")
10
+ model = AutoModelForCausalLM.from_pretrained("rajan3208/uzmi-gpt")
11
+ return tokenizer, model
12
 
13
+ tokenizer, model = load_model()
 
 
 
 
 
 
 
14
 
15
+ prompt = st.text_area("Enter a prompt", "A romantic quote about forever")
 
16
 
17
+ if st.button("Generate"):
18
+ inputs = tokenizer(prompt, return_tensors="pt")
19
+ output = model.generate(**inputs, max_new_tokens=50)
20
+ generated = tokenizer.decode(output[0], skip_special_tokens=True)
21
+ st.success(generated)