smart_network_planning / file_handler.py
rajeshthangaraj1's picture
milvus update
6866239 verified
import os
import hashlib
import io
import pandas as pd
from PyPDF2 import PdfReader
from docx import Document
from langchain_huggingface import HuggingFaceEmbeddings
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
import json
class FileHandler:
def __init__(self,api_token,logger):
self.logger = logger
self.logger.info("Initializing FileHandler...")
# Initialize the embedding model using Hugging Face
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"token": api_token},
)
def handle_file_upload(self, file, document_name, document_description):
try:
content = file.read()
file_hash = hashlib.md5(content).hexdigest()
collection_name = f"collection_{file_hash}"
# Check if the collection exists
if connections._fetch_handler().has_collection(collection_name):
self.logger.info(f"Collection '{collection_name}' already exists.")
return {"message": "File already processed."}
# Process file based on type
if file.name.endswith(".pdf"):
texts, metadatas = self.load_and_split_pdf(file)
elif file.name.endswith(".docx"):
texts, metadatas = self.load_and_split_docx(file)
elif file.name.endswith(".txt"):
texts, metadatas = self.load_and_split_txt(content)
elif file.name.endswith(".xlsx"):
texts, metadatas = self.load_and_split_table(content)
elif file.name.endswith(".csv"):
texts, metadatas = self.load_and_split_csv(content)
else:
self.logger.info("Unsupported file format.")
raise ValueError("Unsupported file format.")
if not texts:
return {"message": "No text extracted from the file. Check the file content."}
# self._store_vectors(collection_name, texts, metadatas)
filename = file.name
filelen = len(content)
self._store_vectors(collection_name, texts, metadatas, document_name, document_description,filename,filelen)
self.logger.info(f"File processed successfully. Collection name: {collection_name}")
return {"message": "File processed successfully."}
except Exception as e:
self.logger.error(f"Error processing file: {str(e)}")
return {"message": f"Error processing file: {str(e)}"}
def _store_vectors(self, collection_name, texts, metadatas, document_name, document_description,file_name,file_len):
fields = [
FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=384),
FieldSchema(name="file_name_hash", dtype=DataType.INT64), # Hash of file name
FieldSchema(name="document_name_hash", dtype=DataType.INT64), # Hash of document name
FieldSchema(name="document_description_hash", dtype=DataType.INT64), # Hash of document description
FieldSchema(name="file_meta_hash", dtype=DataType.INT64),
FieldSchema(name="file_size", dtype=DataType.INT64),
]
schema = CollectionSchema(fields, description="Document embeddings with metadata")
collection = Collection(name=collection_name, schema=schema)
# Generate embeddings
embeddings = [self.embeddings.embed_query(text) for text in texts]
# Convert metadata to hashed values
file_name_hash = int(hashlib.md5(file_name.encode('utf-8')).hexdigest(), 16) % (10 ** 12)
document_name_hash = int(hashlib.md5((document_name or "Unknown Document").encode('utf-8')).hexdigest(), 16) % (
10 ** 12)
document_description_hash = int(
hashlib.md5((document_description or "No Description Provided").encode('utf-8')).hexdigest(), 16) % (
10 ** 12)
# Convert metadata list to JSON string and hash it
metadata_string = json.dumps(metadatas, ensure_ascii=False)
file_meta_hash = int(hashlib.md5(metadata_string.encode('utf-8')).hexdigest(), 16) % (10 ** 12)
# Prepare data for insertion
data = [
embeddings,
[file_name_hash] * len(embeddings),
[document_name_hash] * len(embeddings),
[document_description_hash] * len(embeddings),
[file_meta_hash] * len(embeddings),
[file_len or 0] * len(embeddings),
]
# Insert data into collection
collection.insert(data)
collection.load()
def load_and_split_pdf(self, file):
reader = PdfReader(file)
texts = []
metadatas = []
for page_num, page in enumerate(reader.pages):
text = page.extract_text()
if text:
texts.append(text)
metadatas.append({"page_number": page_num + 1})
return texts, metadatas
def load_and_split_docx(self, file):
doc = Document(file)
texts = []
metadatas = []
for para_num, paragraph in enumerate(doc.paragraphs):
if paragraph.text:
texts.append(paragraph.text)
metadatas.append({"paragraph_number": para_num + 1})
return texts, metadatas
def load_and_split_txt(self, content):
text = content.decode("utf-8")
lines = text.split('\n')
texts = [line for line in lines if line.strip()]
metadatas = [{}] * len(texts)
return texts, metadatas
def load_and_split_table(self, content):
excel_data = pd.read_excel(io.BytesIO(content), sheet_name=None)
texts = []
metadatas = []
for sheet_name, df in excel_data.items():
df = df.dropna(how='all', axis=0).dropna(how='all', axis=1)
df = df.fillna('N/A')
for _, row in df.iterrows():
row_dict = row.to_dict()
# Combine key-value pairs into a string
row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()])
texts.append(row_text)
metadatas.append({"sheet_name": sheet_name})
return texts, metadatas
def load_and_split_csv(self, content):
csv_data = pd.read_csv(io.StringIO(content.decode('utf-8')))
texts = []
metadatas = []
csv_data = csv_data.dropna(how='all', axis=0).dropna(how='all', axis=1)
csv_data = csv_data.fillna('N/A')
for _, row in csv_data.iterrows():
row_dict = row.to_dict()
row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()])
texts.append(row_text)
metadatas.append({"row_index": _})
return texts, metadatas