import os import hashlib import io import json import pandas as pd from langchain_community.vectorstores import FAISS from PyPDF2 import PdfReader from docx import Document from langchain_huggingface import HuggingFaceEmbeddings class FileHandler: def __init__(self, vector_db_path,api_token): self.vector_db_path = vector_db_path # Initialize the embedding model using Hugging Face self.embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"token": api_token}, ) def handle_file_upload(self, file, document_name, document_description): try: content = file.read() file_hash = hashlib.md5(content).hexdigest() file_key = f"{file.name}_{file_hash}" vector_store_dir = os.path.join(self.vector_db_path, file_key) os.makedirs(vector_store_dir, exist_ok=True) vector_store_path = os.path.join(vector_store_dir, "index.faiss") if os.path.exists(vector_store_path): return {"message": "File already processed."} # Process file based on type if file.name.endswith(".pdf"): texts, metadatas = self.load_and_split_pdf(file) elif file.name.endswith(".docx"): texts, metadatas = self.load_and_split_docx(file) elif file.name.endswith(".txt"): texts, metadatas = self.load_and_split_txt(content) elif file.name.endswith(".xlsx"): texts, metadatas = self.load_and_split_table(content) elif file.name.endswith(".csv"): texts, metadatas = self.load_and_split_csv(content) else: raise ValueError("Unsupported file format.") if not texts: return {"message": "No text extracted from the file. Check the file content."} # Create FAISS vector store using LangChain's from_texts method vector_store = FAISS.from_texts(texts, embedding=self.embeddings, metadatas=metadatas) vector_store.save_local(vector_store_dir) metadata = { "filename": file.name, "document_name": document_name, "document_description": document_description, "file_size": len(content), } metadata_path = os.path.join(vector_store_dir, "metadata.json") with open(metadata_path, 'w') as md_file: json.dump(metadata, md_file) return {"message": "File processed successfully."} except Exception as e: return {"message": f"Error processing file: {str(e)}"} def load_and_split_pdf(self, file): reader = PdfReader(file) texts = [] metadatas = [] for page_num, page in enumerate(reader.pages): text = page.extract_text() if text: texts.append(text) metadatas.append({"page_number": page_num + 1}) return texts, metadatas def load_and_split_docx(self, file): doc = Document(file) texts = [] metadatas = [] for para_num, paragraph in enumerate(doc.paragraphs): if paragraph.text: texts.append(paragraph.text) metadatas.append({"paragraph_number": para_num + 1}) return texts, metadatas def load_and_split_txt(self, content): text = content.decode("utf-8") lines = text.split('\n') texts = [line for line in lines if line.strip()] metadatas = [{}] * len(texts) return texts, metadatas def load_and_split_table(self, content): excel_data = pd.read_excel(io.BytesIO(content), sheet_name=None) texts = [] metadatas = [] for sheet_name, df in excel_data.items(): df = df.dropna(how='all', axis=0).dropna(how='all', axis=1) df = df.fillna('N/A') for _, row in df.iterrows(): row_dict = row.to_dict() # Combine key-value pairs into a string row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()]) texts.append(row_text) metadatas.append({"sheet_name": sheet_name}) return texts, metadatas def load_and_split_csv(self, content): csv_data = pd.read_csv(io.StringIO(content.decode('utf-8'))) texts = [] metadatas = [] csv_data = csv_data.dropna(how='all', axis=0).dropna(how='all', axis=1) csv_data = csv_data.fillna('N/A') for _, row in csv_data.iterrows(): row_dict = row.to_dict() row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()]) texts.append(row_text) metadatas.append({"row_index": _}) return texts, metadatas