rajistics commited on
Commit
200e3e5
Β·
1 Parent(s): 4d457ef

Image mods

Browse files
Files changed (1) hide show
  1. app.py +4 -8
app.py CHANGED
@@ -23,7 +23,6 @@ model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-fine
23
  dataset = load_dataset("nielsr/cord-layoutlmv3", split="test")
24
  #image = Image.open(dataset[0]["image_path"]).convert("RGB")
25
  image = Image.open("./test0.jpeg")
26
- #image.save("document.png")
27
  # define id2label, label2color
28
  labels = dataset.features['ner_tags'].feature.names
29
  id2label = {v: k for v, k in enumerate(labels)}
@@ -35,8 +34,6 @@ label2color = {}
35
  for k,v in id2label.items():
36
  label2color[v[2:]]=label_color[k]
37
 
38
- #label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
39
-
40
  def unnormalize_box(bbox, width, height):
41
  return [
42
  width * (bbox[0] / 1000),
@@ -75,8 +72,6 @@ def process_image(image):
75
  font = ImageFont.load_default()
76
  for prediction, box in zip(true_predictions, true_boxes):
77
  predicted_label = iob_to_label(prediction) #.lower()
78
- #print (predicted_label)
79
- #print (label2color[predicted_label])
80
  draw.rectangle(box, outline=label2color[predicted_label])
81
  draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
82
 
@@ -84,13 +79,14 @@ def process_image(image):
84
 
85
 
86
  title = "Interactive demo: LayoutLMv3"
87
- description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on CORD, a dataset of ***. It annotates the words appearing in the image as ***. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
88
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
89
  examples =[['test0.jpeg'],['./test1.jpeg'],['test2.jpeg']]
90
 
91
- css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
 
92
  #css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
93
- # css = ".output_image, .input_image {height: 600px !important}"
94
 
95
  css = ".image-preview {height: auto !important;}"
96
 
 
23
  dataset = load_dataset("nielsr/cord-layoutlmv3", split="test")
24
  #image = Image.open(dataset[0]["image_path"]).convert("RGB")
25
  image = Image.open("./test0.jpeg")
 
26
  # define id2label, label2color
27
  labels = dataset.features['ner_tags'].feature.names
28
  id2label = {v: k for v, k in enumerate(labels)}
 
34
  for k,v in id2label.items():
35
  label2color[v[2:]]=label_color[k]
36
 
 
 
37
  def unnormalize_box(bbox, width, height):
38
  return [
39
  width * (bbox[0] / 1000),
 
72
  font = ImageFont.load_default()
73
  for prediction, box in zip(true_predictions, true_boxes):
74
  predicted_label = iob_to_label(prediction) #.lower()
 
 
75
  draw.rectangle(box, outline=label2color[predicted_label])
76
  draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
77
 
 
79
 
80
 
81
  title = "Interactive demo: LayoutLMv3"
82
+ description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on CORD, a dataset of receipts. It annotates the words appearing in the image as ***. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
83
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
84
  examples =[['test0.jpeg'],['./test1.jpeg'],['test2.jpeg']]
85
 
86
+ css = ".output-image, .input-image"
87
+ #css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
88
  #css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
89
+ #$css = ".output_image, .input_image {height: 600px !important}"
90
 
91
  css = ".image-preview {height: auto !important;}"
92