File size: 10,723 Bytes
8b21729
90b0a17
8b21729
 
 
 
90b0a17
8b21729
 
 
 
 
90b0a17
8b21729
90b0a17
8b21729
 
 
 
 
 
 
 
90b0a17
8b21729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b0a17
8b21729
 
 
90b0a17
8b21729
90b0a17
8b21729
 
 
 
 
 
 
90b0a17
8b21729
 
 
 
 
 
 
 
 
90b0a17
8b21729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b0a17
8b21729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b0a17
8b21729
 
 
 
90b0a17
 
8b21729
 
90b0a17
 
8b21729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b0a17
 
8b21729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
REVENUE EXCEL REPORT GENERATION TASK

=== YOUR MISSION ===
Create a professional Excel report from arranged_financial_data.json focusing ONLY on revenue data.
Generate a business-ready revenue analysis report with 100% success rate.
You are using gemini-2.5-flash with thinking budget optimization and RestrictedPythonTools for automatic path correction and package management.

=== WHAT TO CREATE ===
β€’ Professional Excel file with revenue-focused worksheets
β€’ Clean, business-ready formatting for executives
β€’ Focus exclusively on revenue analysis and visualization
β€’ File ready for immediate business use

=== MANDATORY EXECUTION SEQUENCE ===

**STEP 1: Environment Setup (30 seconds)**
```python
# RestrictedPythonTools automatically installs packages when needed
# Just use run_python_code() - packages will be auto-installed
import pandas as pd
import openpyxl
print("Packages will be auto-installed by RestrictedPythonTools")
```

**STEP 2: Revenue Data Loading (30 seconds)**
- read_file('arranged_financial_data.json')
- Parse and validate revenue data structure
- Count revenue categories and data points
- Log: "Revenue data loaded: X categories, Y revenue points"

**STEP 3: Revenue Excel Script Creation (3 minutes)**
Create 'generate_revenue_report.py' with this EXACT structure:

```python
#!/usr/bin/env python3
import os
import sys
import json
import pandas as pd
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Border, Side, Alignment
from datetime import datetime
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def main():
    try:
        # Load revenue data
        logger.info('Loading revenue data from arranged_financial_data.json')
        with open('arranged_financial_data.json', 'r', encoding='utf-8') as f:
            revenue_data = json.load(f)
        
        # Create professional workbook
        logger.info('Creating revenue analysis workbook')
        wb = Workbook()
        wb.remove(wb.active)  # Remove default sheet
        
        # Define professional styling
        header_font = Font(bold=True, color='FFFFFF', size=12)
        header_fill = PatternFill(start_color='1F4E79', end_color='1F4E79', fill_type='solid')
        data_font = Font(size=11)
        
        # Process each revenue category
        revenue_categories = ['Company_Overview', 'Total_Revenue', 'Segment_Revenue', 'Regional_Revenue', 'Data_Quality']
        
        for category_name in revenue_categories:
            if category_name in revenue_data:
                logger.info(f'Creating worksheet: {category_name}')
                category_data = revenue_data[category_name]
                ws = wb.create_sheet(title=category_name)
                
                # Add professional headers
                headers = ['Revenue Item', 'Amount', 'Currency/Unit', 'Period', 'Confidence Score']
                for col, header in enumerate(headers, 1):
                    cell = ws.cell(row=1, column=col, value=header)
                    cell.font = header_font
                    cell.fill = header_fill
                    cell.alignment = Alignment(horizontal='center', vertical='center')
                
                # Add revenue data
                data_rows = category_data.get('data', [])
                for row_idx, data_row in enumerate(data_rows, 2):
                    ws.cell(row=row_idx, column=1, value=data_row.get('item', '')).font = data_font
                    ws.cell(row=row_idx, column=2, value=data_row.get('value', '')).font = data_font
                    ws.cell(row=row_idx, column=3, value=data_row.get('unit', '')).font = data_font
                    ws.cell(row=row_idx, column=4, value=data_row.get('period', '')).font = data_font
                    ws.cell(row=row_idx, column=5, value=data_row.get('confidence', '')).font = data_font
                
                # Auto-size columns for professional appearance
                for column in ws.columns:
                    max_length = 0
                    column_letter = column[0].column_letter
                    for cell in column:
                        try:
                            if len(str(cell.value or '')) > max_length:
                                max_length = len(str(cell.value or ''))
                        except:
                            pass
                    adjusted_width = min(max(max_length + 2, 15), 50)
                    ws.column_dimensions[column_letter].width = adjusted_width
                
                # Add borders for professional look
                thin_border = Border(
                    left=Side(style='thin'),
                    right=Side(style='thin'), 
                    top=Side(style='thin'),
                    bottom=Side(style='thin')
                )
                
                for row in ws.iter_rows(min_row=1, max_row=len(data_rows)+1, min_col=1, max_col=5):
                    for cell in row:
                        cell.border = thin_border
        
        # Save with professional filename
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        filename = f'Revenue_Analysis_Report_{timestamp}.xlsx'
        wb.save(filename)
        logger.info(f'Revenue report saved as: {filename}')
        
        # Verify file creation and quality
        if os.path.exists(filename):
            file_size = os.path.getsize(filename)
            if file_size > 5000:  # Minimum 5KB
                logger.info(f'SUCCESS: Revenue report created successfully')
                logger.info(f'File: {filename} ({file_size:,} bytes)')
                logger.info(f'Worksheets: {len(wb.sheetnames)}')
                print(f'REVENUE_REPORT_SUCCESS: {filename}')
                return filename
            else:
                raise Exception(f'File too small ({file_size} bytes), likely corrupted')
        else:
            raise Exception('Excel file was not created')
            
    except FileNotFoundError as e:
        logger.error(f'Revenue data file not found: {str(e)}')
        sys.exit(1)
    except json.JSONDecodeError as e:
        logger.error(f'Invalid JSON in revenue data: {str(e)}')
        sys.exit(1)
    except Exception as e:
        logger.error(f'Error creating revenue report: {str(e)}')
        import traceback
        logger.error(f'Traceback: {traceback.format_exc()}')
        sys.exit(1)

if __name__ == '__main__':
    result = main()
    print(f'COMPLETED: {result}')
```

**STEP 4: Script Execution with RestrictedPythonTools (2 minutes)**
- Use run_python_code([complete_script]) for direct execution with auto-healing
- OR save_python_file('generate_revenue_report.py', [complete_script]) + run_shell_command('python generate_revenue_report.py')
- RestrictedPythonTools automatically handles path correction and directory constraints
- Automatic package installation and error recovery built-in
- If execution fails, RestrictedPythonTools will attempt automatic recovery

**STEP 5: Excel File Verification (CRITICAL - 30 seconds)**
- list_files() to check if Excel file exists in directory
- If Excel file NOT found in list_files(), retry script execution immediately
- run_shell_command('ls -la *Revenue*.xlsx') for detailed file info
- run_shell_command('du -h *Revenue*.xlsx') to verify file size > 5KB
- NEVER report success without Excel file confirmed in list_files()

=== REVENUE REPORT SPECIFICATIONS ===

**File Structure:**
- Filename: Revenue_Analysis_Report_YYYYMMDD_HHMMSS.xlsx
- 5 worksheets focusing exclusively on revenue data
- Professional corporate formatting throughout

**Worksheet Details:**
1. **Company_Overview** - Company info, document metadata
2. **Total_Revenue** - Consolidated revenue figures and totals
3. **Segment_Revenue** - Revenue by business segment/division
4. **Regional_Revenue** - Revenue by geographic region
5. **Data_Quality** - Confidence scores and data validation

**Professional Formatting:**
- Headers: Bold white text on navy blue background (#1F4E79)
- Data: Clean 11pt font with professional alignment
- Borders: Thin borders around all data cells
- Columns: Auto-sized for optimal readability (15-50 characters)
- Layout: Business-ready presentation format

=== ERROR HANDLING PROCEDURES ===

**Package Installation Issues:**
- Try: pip install --user openpyxl pandas
- Try: python3 -m pip install openpyxl pandas  
- Try: pip install --no-cache-dir openpyxl

**Revenue Data Loading Issues:**
- Verify arranged_financial_data.json exists
- Check JSON syntax and structure
- Ensure revenue categories are present

**Excel Generation Issues:**
- Log exact openpyxl error messages
- Try simplified formatting if complex formatting fails
- Check file write permissions in directory
- Verify Python version compatibility

**File Verification Issues:**
- Check file exists and has reasonable size (>5KB)
- Verify Excel file can be opened without corruption
- Confirm all expected worksheets are present

=== SUCCESS CRITERIA ===
Revenue Excel generation is successful ONLY if:
βœ“ openpyxl package installed without errors
βœ“ Revenue data loaded and parsed successfully
βœ“ Python script executed without errors  
βœ“ Excel file created with proper filename format
βœ“ File size > 5KB indicating data was written
βœ“ All 5 revenue worksheets present and populated
βœ“ Professional formatting applied consistently
βœ“ File opens without corruption in Excel

=== PROFESSIONAL FEATURES ===
Your Excel report MUST include:
- **Corporate Design**: Professional navy blue headers with white text
- **Business Layout**: Clean, executive-ready formatting
- **Data Integrity**: All original revenue values preserved exactly
- **User Experience**: Auto-sized columns, proper alignment, clear borders
- **File Management**: Timestamped filename for version control
- **Quality Assurance**: Comprehensive error handling and validation

=== FINAL VALIDATION CHECKLIST ===
Before reporting success, verify:
β–‘ All required packages installed successfully
β–‘ Revenue data JSON loaded and parsed correctly
β–‘ Python script saved and executed without errors
β–‘ Excel file created with timestamped filename
β–‘ File size indicates successful data population (>5KB)
β–‘ All 5 revenue worksheets present and properly named
β–‘ Revenue data populated correctly in each worksheet
β–‘ Professional formatting applied consistently
β–‘ No execution errors or warnings in output
β–‘ File can be opened by Excel applications

Execute now. Focus EXCLUSIVELY on revenue data visualization. Create a professional, publication-ready revenue analysis report for business executives.