File size: 10,723 Bytes
8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 90b0a17 8b21729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
REVENUE EXCEL REPORT GENERATION TASK === YOUR MISSION === Create a professional Excel report from arranged_financial_data.json focusing ONLY on revenue data. Generate a business-ready revenue analysis report with 100% success rate. You are using gemini-2.5-flash with thinking budget optimization and RestrictedPythonTools for automatic path correction and package management. === WHAT TO CREATE === β’ Professional Excel file with revenue-focused worksheets β’ Clean, business-ready formatting for executives β’ Focus exclusively on revenue analysis and visualization β’ File ready for immediate business use === MANDATORY EXECUTION SEQUENCE === **STEP 1: Environment Setup (30 seconds)** ```python # RestrictedPythonTools automatically installs packages when needed # Just use run_python_code() - packages will be auto-installed import pandas as pd import openpyxl print("Packages will be auto-installed by RestrictedPythonTools") ``` **STEP 2: Revenue Data Loading (30 seconds)** - read_file('arranged_financial_data.json') - Parse and validate revenue data structure - Count revenue categories and data points - Log: "Revenue data loaded: X categories, Y revenue points" **STEP 3: Revenue Excel Script Creation (3 minutes)** Create 'generate_revenue_report.py' with this EXACT structure: ```python #!/usr/bin/env python3 import os import sys import json import pandas as pd from openpyxl import Workbook from openpyxl.styles import Font, PatternFill, Border, Side, Alignment from datetime import datetime import logging # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def main(): try: # Load revenue data logger.info('Loading revenue data from arranged_financial_data.json') with open('arranged_financial_data.json', 'r', encoding='utf-8') as f: revenue_data = json.load(f) # Create professional workbook logger.info('Creating revenue analysis workbook') wb = Workbook() wb.remove(wb.active) # Remove default sheet # Define professional styling header_font = Font(bold=True, color='FFFFFF', size=12) header_fill = PatternFill(start_color='1F4E79', end_color='1F4E79', fill_type='solid') data_font = Font(size=11) # Process each revenue category revenue_categories = ['Company_Overview', 'Total_Revenue', 'Segment_Revenue', 'Regional_Revenue', 'Data_Quality'] for category_name in revenue_categories: if category_name in revenue_data: logger.info(f'Creating worksheet: {category_name}') category_data = revenue_data[category_name] ws = wb.create_sheet(title=category_name) # Add professional headers headers = ['Revenue Item', 'Amount', 'Currency/Unit', 'Period', 'Confidence Score'] for col, header in enumerate(headers, 1): cell = ws.cell(row=1, column=col, value=header) cell.font = header_font cell.fill = header_fill cell.alignment = Alignment(horizontal='center', vertical='center') # Add revenue data data_rows = category_data.get('data', []) for row_idx, data_row in enumerate(data_rows, 2): ws.cell(row=row_idx, column=1, value=data_row.get('item', '')).font = data_font ws.cell(row=row_idx, column=2, value=data_row.get('value', '')).font = data_font ws.cell(row=row_idx, column=3, value=data_row.get('unit', '')).font = data_font ws.cell(row=row_idx, column=4, value=data_row.get('period', '')).font = data_font ws.cell(row=row_idx, column=5, value=data_row.get('confidence', '')).font = data_font # Auto-size columns for professional appearance for column in ws.columns: max_length = 0 column_letter = column[0].column_letter for cell in column: try: if len(str(cell.value or '')) > max_length: max_length = len(str(cell.value or '')) except: pass adjusted_width = min(max(max_length + 2, 15), 50) ws.column_dimensions[column_letter].width = adjusted_width # Add borders for professional look thin_border = Border( left=Side(style='thin'), right=Side(style='thin'), top=Side(style='thin'), bottom=Side(style='thin') ) for row in ws.iter_rows(min_row=1, max_row=len(data_rows)+1, min_col=1, max_col=5): for cell in row: cell.border = thin_border # Save with professional filename timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') filename = f'Revenue_Analysis_Report_{timestamp}.xlsx' wb.save(filename) logger.info(f'Revenue report saved as: {filename}') # Verify file creation and quality if os.path.exists(filename): file_size = os.path.getsize(filename) if file_size > 5000: # Minimum 5KB logger.info(f'SUCCESS: Revenue report created successfully') logger.info(f'File: {filename} ({file_size:,} bytes)') logger.info(f'Worksheets: {len(wb.sheetnames)}') print(f'REVENUE_REPORT_SUCCESS: {filename}') return filename else: raise Exception(f'File too small ({file_size} bytes), likely corrupted') else: raise Exception('Excel file was not created') except FileNotFoundError as e: logger.error(f'Revenue data file not found: {str(e)}') sys.exit(1) except json.JSONDecodeError as e: logger.error(f'Invalid JSON in revenue data: {str(e)}') sys.exit(1) except Exception as e: logger.error(f'Error creating revenue report: {str(e)}') import traceback logger.error(f'Traceback: {traceback.format_exc()}') sys.exit(1) if __name__ == '__main__': result = main() print(f'COMPLETED: {result}') ``` **STEP 4: Script Execution with RestrictedPythonTools (2 minutes)** - Use run_python_code([complete_script]) for direct execution with auto-healing - OR save_python_file('generate_revenue_report.py', [complete_script]) + run_shell_command('python generate_revenue_report.py') - RestrictedPythonTools automatically handles path correction and directory constraints - Automatic package installation and error recovery built-in - If execution fails, RestrictedPythonTools will attempt automatic recovery **STEP 5: Excel File Verification (CRITICAL - 30 seconds)** - list_files() to check if Excel file exists in directory - If Excel file NOT found in list_files(), retry script execution immediately - run_shell_command('ls -la *Revenue*.xlsx') for detailed file info - run_shell_command('du -h *Revenue*.xlsx') to verify file size > 5KB - NEVER report success without Excel file confirmed in list_files() === REVENUE REPORT SPECIFICATIONS === **File Structure:** - Filename: Revenue_Analysis_Report_YYYYMMDD_HHMMSS.xlsx - 5 worksheets focusing exclusively on revenue data - Professional corporate formatting throughout **Worksheet Details:** 1. **Company_Overview** - Company info, document metadata 2. **Total_Revenue** - Consolidated revenue figures and totals 3. **Segment_Revenue** - Revenue by business segment/division 4. **Regional_Revenue** - Revenue by geographic region 5. **Data_Quality** - Confidence scores and data validation **Professional Formatting:** - Headers: Bold white text on navy blue background (#1F4E79) - Data: Clean 11pt font with professional alignment - Borders: Thin borders around all data cells - Columns: Auto-sized for optimal readability (15-50 characters) - Layout: Business-ready presentation format === ERROR HANDLING PROCEDURES === **Package Installation Issues:** - Try: pip install --user openpyxl pandas - Try: python3 -m pip install openpyxl pandas - Try: pip install --no-cache-dir openpyxl **Revenue Data Loading Issues:** - Verify arranged_financial_data.json exists - Check JSON syntax and structure - Ensure revenue categories are present **Excel Generation Issues:** - Log exact openpyxl error messages - Try simplified formatting if complex formatting fails - Check file write permissions in directory - Verify Python version compatibility **File Verification Issues:** - Check file exists and has reasonable size (>5KB) - Verify Excel file can be opened without corruption - Confirm all expected worksheets are present === SUCCESS CRITERIA === Revenue Excel generation is successful ONLY if: β openpyxl package installed without errors β Revenue data loaded and parsed successfully β Python script executed without errors β Excel file created with proper filename format β File size > 5KB indicating data was written β All 5 revenue worksheets present and populated β Professional formatting applied consistently β File opens without corruption in Excel === PROFESSIONAL FEATURES === Your Excel report MUST include: - **Corporate Design**: Professional navy blue headers with white text - **Business Layout**: Clean, executive-ready formatting - **Data Integrity**: All original revenue values preserved exactly - **User Experience**: Auto-sized columns, proper alignment, clear borders - **File Management**: Timestamped filename for version control - **Quality Assurance**: Comprehensive error handling and validation === FINAL VALIDATION CHECKLIST === Before reporting success, verify: β‘ All required packages installed successfully β‘ Revenue data JSON loaded and parsed correctly β‘ Python script saved and executed without errors β‘ Excel file created with timestamped filename β‘ File size indicates successful data population (>5KB) β‘ All 5 revenue worksheets present and properly named β‘ Revenue data populated correctly in each worksheet β‘ Professional formatting applied consistently β‘ No execution errors or warnings in output β‘ File can be opened by Excel applications Execute now. Focus EXCLUSIVELY on revenue data visualization. Create a professional, publication-ready revenue analysis report for business executives. |