Data_Extractor_Using_Gemini / workflow /financial_workflow.py
methunraj
feat: Implement revenue data organization workflow with JSON output
8b21729
"""
Financial Document Analysis Workflow - Agno Workflow 2.0 Implementation (Fixed)
This workflow processes financial documents through a multi-agent system using the new
step-based architecture introduced in Agno Workflow 2.0:
1. Data Extractor Agent: Extracts structured financial data
2. Data Arrangement Function: Organizes data into Excel-ready format
3. Code Generator Agent: Creates professional Excel reports
Built according to Agno Workflow 2.0 standards with simple sequential execution.
"""
import json
import time
from pathlib import Path
from typing import Optional, Dict, Any
from textwrap import dedent
import os
from agno.agent import Agent
from agno.models.google import Gemini
from agno.tools.file import FileTools
from agno.tools.shell import ShellTools
from agno.tools.python import PythonTools
from agno.workflow.v2.workflow import Workflow
from agno.workflow.v2.types import StepInput, StepOutput
from agno.workflow.v2.step import Step
from agno.storage.sqlite import SqliteStorage # Added this import
from agno.utils.log import logger
from pydantic import BaseModel, Field
from config.settings import settings
from utils.prompt_loader import prompt_loader
from utils.shell_toolkit import RestrictedShellTools
from utils.restricted_python_tools import RestrictedPythonTools
class DataPoint(BaseModel):
"""Individual financial data point."""
field_name: str = Field(description="Name of the financial data field")
value: str = Field(description="Value of the field")
category: str = Field(description="Financial category (revenue, expenses, assets, etc.)")
period: str = Field(default="", description="Time period if applicable")
unit: str = Field(default="", description="Currency or measurement unit")
confidence: float = Field(default=0.9, description="Confidence score 0-1")
class Metadata(BaseModel):
"""Metadata for extracted financial data."""
company_name: str = Field(default="Unknown Company", description="Company name")
document_type: str = Field(default="Unknown", description="Type of financial document")
reporting_period: str = Field(default="", description="Reporting period")
currency: str = Field(default="", description="Primary currency used")
class ExtractedFinancialData(BaseModel):
"""Structured model for extracted financial data."""
data_points: list[DataPoint] = Field(description="List of extracted financial data points")
summary: str = Field(description="Summary of the extracted data")
metadata: Metadata = Field(default_factory=Metadata, description="Additional metadata")
class FinancialDocumentWorkflow(Workflow):
"""
Financial document analysis workflow using Agno Workflow 2.0 step-based architecture.
This workflow processes financial documents through three specialized steps:
- Data extraction with structured outputs
- Data arrangement for Excel compatibility
- Excel report generation with formatting
"""
def __init__(self, session_id: Optional[str] = None, **kwargs):
"""Initialize workflow with session management and step-based architecture."""
# Initialize session directories first
self._setup_session_directories(session_id)
# Create storage with auto schema upgrade
storage = SqliteStorage(
table_name="financial_workflows",
db_file="tmp/agno_workflows.db",
mode="workflow_v2", # Use workflow_v2 mode
auto_upgrade_schema=True # This will fix your schema issues
)
# Create agents for the workflow
self.data_extractor = self._create_data_extractor()
self.data_arranger = self._create_data_arranger()
self.code_generator = self._create_code_generator()
# Create steps using Step objects for better tracking
data_extraction_step = Step(
name="FinancialDataExtractor",
agent=self.data_extractor,
description="Expert financial data extraction specialist optimized for Gemini"
)
data_arrangement_step = Step(
name="DataArrangement",
executor=self._arrangement_function,
description="User-defined callable step for data arrangement"
)
excel_generation_step = Step(
name="ExcelReportGenerator",
agent=self.code_generator,
description="Excel report generator optimized for Gemini with cross-platform support"
)
# Initialize the Workflow 2.0 with step-based architecture
super().__init__(
name="FinancialDocumentWorkflow",
description=dedent("""\
Financial document analysis workflow using Agno Workflow 2.0 with step-based execution.
Processes financial documents through extraction, arrangement, and Excel report generation.
Uses session state for caching and proper error recovery mechanisms.
"""),
steps=[
data_extraction_step,
data_arrangement_step,
excel_generation_step
],
session_id=session_id,
storage=storage, # Add the storage here
debug_mode=True,
**kwargs
)
logger.info(f"FinancialDocumentWorkflow v2.0 initialized with session: {self.session_id}")
logger.info(f"Session directories: {list(self.session_directories.keys())}")
def _setup_session_directories(self, session_id: Optional[str] = None):
"""Setup session-specific directories."""
self.session_id = session_id
self.session_directories = settings.create_session_directories(self.session_id)
self.session_output_dir = self.session_directories["output"]
self.session_input_dir = self.session_directories["input"]
self.session_temp_dir = self.session_directories["temp"]
self.session_cache_dir = self.session_directories["cache"]
def _create_data_extractor(self) -> Agent:
"""Create the data extraction agent."""
return Agent(
model=Gemini(
id=settings.DATA_EXTRACTOR_MODEL,
thinking_budget=settings.DATA_EXTRACTOR_MODEL_THINKING_BUDGET,
api_key=settings.GOOGLE_API_KEY
),
name="FinancialDataExtractor",
description="Expert financial data extraction specialist optimized for Gemini",
instructions=prompt_loader.load_instructions_as_list("agents/data_extractor"),
response_model=ExtractedFinancialData,
structured_outputs=True,
debug_mode=True,
retries=10,
delay_between_retries=10,
exponential_backoff=True,
)
def _create_data_arranger(self) -> Agent:
"""Create the data arrangement agent."""
logger.info(f"Data arranger base directory: {self.session_output_dir}")
logger.info(f"Directory exists: {self.session_output_dir.exists()}")
logger.info(f"Directory is writable: {os.access(self.session_output_dir, os.W_OK)}")
return Agent(
model=Gemini(
id=settings.DATA_ARRANGER_MODEL,
thinking_budget=settings.DATA_ARRANGER_MODEL_THINKING_BUDGET,
api_key=settings.GOOGLE_API_KEY
),
name="FinancialDataArranger",
description="Financial data organization specialist optimized for Gemini",
instructions=prompt_loader.load_instructions_as_list("agents/data_arranger"),
tools=[
RestrictedShellTools(base_dir=self.session_output_dir),
FileTools(base_dir=self.session_output_dir, save_files=True, read_files=True, list_files=True),
],
markdown=False,
debug_mode=True,
add_memory_references=True,
add_session_summary_references=True,
retries=10,
delay_between_retries=10,
exponential_backoff=True,
)
def _create_code_generator(self) -> Agent:
"""Create the code generation agent."""
return Agent(
model=Gemini(
id=settings.CODE_GENERATOR_MODEL,
thinking_budget=settings.CODE_GENERATOR_MODEL_THINKING_BUDGET,
api_key=settings.GOOGLE_API_KEY
),
name="ExcelReportGenerator",
description="Excel report generator optimized for Gemini with cross-platform support",
goal="Generate professional Excel reports from arranged financial data with multiple worksheets and formatting",
instructions=prompt_loader.load_instructions_as_list("agents/code_generator"),
expected_output="A professionally formatted Excel file with multiple worksheets, charts, and proper styling",
additional_context=f"Working directory: {self.session_output_dir}. All files must be saved in this directory only.",
tools=[
RestrictedShellTools(base_dir=self.session_output_dir),
RestrictedPythonTools(base_dir=self.session_output_dir),
FileTools(base_dir=self.session_output_dir, save_files=True, read_files=True, list_files=True)
],
markdown=False,
show_tool_calls=True,
debug_mode=True,
add_datetime_to_instructions=True,
retries=10,
delay_between_retries=10,
exponential_backoff=True,
)
def _arrangement_function(self, step_input: StepInput) -> StepOutput:
"""Custom function for data arrangement step."""
try:
message = step_input.message
previous_step_content = step_input.previous_step_content
logger.info("Starting data arrangement step")
# Load the base arrangement prompt
arrangement_prompt = prompt_loader.load_prompt("workflow/data_arrangement")
# Combine prompt with extracted data from previous step
full_arrangement_prompt = f"{arrangement_prompt}\n\nHere is the extracted financial data to arrange:\n\n{previous_step_content}"
# Run data arrangement using the agent
response = self.data_arranger.run(full_arrangement_prompt)
# Cache the arrangement results in workflow session state
if hasattr(self, 'session_state') and self.session_state:
cache_key = f"arrangement_{int(time.time())}"
self.session_state[cache_key] = response.content
logger.info(f"Cached arrangement results with key: {cache_key}")
logger.info("Data arrangement completed successfully")
return StepOutput(
content=response.content,
response=response,
success=True
)
except Exception as e:
logger.error(f"Data arrangement failed: {str(e)}")
return StepOutput(
content=f"Data arrangement failed: {str(e)}",
success=False,
)
def run(self, file_path: str = None, **kwargs):
"""
Main workflow execution using Workflow 2.0 step-based architecture.
Args:
file_path: Path to the financial document to process
**kwargs: Additional parameters
Returns:
Workflow execution result using the new step-based system
"""
# Handle file_path from kwargs if not provided as positional
if file_path is None:
file_path = kwargs.get('file_path')
if file_path is None:
logger.error("file_path is required but not provided")
raise ValueError("file_path is required but not provided")
start_time = time.time()
try:
# Validate input file
file_path = Path(file_path).resolve()
if not file_path.exists():
logger.error(f"File not found: {file_path}")
raise FileNotFoundError(f"File not found: {file_path}")
# Copy input file to session directory for reference
input_file = self.session_input_dir / file_path.name
input_file.write_bytes(file_path.read_bytes())
logger.info(f"Starting financial document analysis for: {file_path.name}")
# Create File object for direct upload to Gemini API (for first step)
from agno.media import File
document = File(filepath=str(file_path))
# Load extraction prompt for the first step
extraction_prompt = prompt_loader.load_prompt(
"workflow/data_extraction",
file_path=str(file_path),
output_directory=str(self.session_output_dir)
)
# Execute the workflow using the new 2.0 step-based system
# Pass the extraction prompt as the message and include the file
result = super().run(
message=extraction_prompt,
files=[document],
**kwargs
)
# Final status
execution_time = time.time() - start_time
status = self._get_workflow_status()
logger.info(f"Workflow completed successfully in {execution_time:.2f} seconds")
logger.info(f"Results: {status}")
return result
except Exception as e:
logger.error(f"Workflow execution failed: {str(e)}")
raise
def _get_workflow_status(self) -> Dict[str, Any]:
"""Get current workflow status and file counts."""
status = {
"session_id": self.session_id,
"output_directory": str(self.session_output_dir),
"json_files": 0,
"excel_files": 0,
"data_points": 0
}
if self.session_output_dir.exists():
status["json_files"] = len(list(self.session_output_dir.glob("*.json")))
status["excel_files"] = len(list(self.session_output_dir.glob("*.xlsx")))
return status
# Compatibility function to maintain the same interface as the original workflow
def create_financial_workflow(session_id: Optional[str] = None, **kwargs) -> FinancialDocumentWorkflow:
"""
Create a new FinancialDocumentWorkflow instance using Workflow 2.0.
Args:
session_id: Optional session ID for tracking workflow execution
**kwargs: Additional parameters for workflow configuration
Returns:
FinancialDocumentWorkflow: Configured workflow instance
"""
return FinancialDocumentWorkflow(session_id=session_id, **kwargs)