Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Disable safetensors fast GPU loading (if needed)
|
6 |
-
import os
|
7 |
-
os.environ["SAFETENSORS_FAST_GPU"] = "0"
|
8 |
|
9 |
# Cache the model and tokenizer
|
10 |
@st.cache_resource
|
11 |
def load_model_and_tokenizer():
|
12 |
model_name = "rajrakeshdr/IntelliSoc"
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, use_safetensors=False)
|
15 |
return model, tokenizer
|
16 |
|
17 |
# Load the model and tokenizer
|
@@ -29,16 +24,15 @@ if st.button("Generate Text"):
|
|
29 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
30 |
|
31 |
# Generate text
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
|
43 |
# Decode the generated text
|
44 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Cache the model and tokenizer
|
5 |
@st.cache_resource
|
6 |
def load_model_and_tokenizer():
|
7 |
model_name = "rajrakeshdr/IntelliSoc"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
10 |
return model, tokenizer
|
11 |
|
12 |
# Load the model and tokenizer
|
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
25 |
|
26 |
# Generate text
|
27 |
+
outputs = model.generate(
|
28 |
+
inputs.input_ids,
|
29 |
+
max_length=100,
|
30 |
+
num_return_sequences=1,
|
31 |
+
no_repeat_ngram_size=2,
|
32 |
+
top_k=50,
|
33 |
+
top_p=0.95,
|
34 |
+
temperature=0.7
|
35 |
+
)
|
|
|
36 |
|
37 |
# Decode the generated text
|
38 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|