rajrakeshdr commited on
Commit
209d107
·
verified ·
1 Parent(s): 3d37119

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -16
app.py CHANGED
@@ -1,17 +1,12 @@
1
  import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
-
5
- # Disable safetensors fast GPU loading (if needed)
6
- import os
7
- os.environ["SAFETENSORS_FAST_GPU"] = "0"
8
 
9
  # Cache the model and tokenizer
10
  @st.cache_resource
11
  def load_model_and_tokenizer():
12
  model_name = "rajrakeshdr/IntelliSoc"
 
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
- model = AutoModelForCausalLM.from_pretrained(model_name, use_safetensors=False)
15
  return model, tokenizer
16
 
17
  # Load the model and tokenizer
@@ -29,16 +24,15 @@ if st.button("Generate Text"):
29
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
30
 
31
  # Generate text
32
- with torch.no_grad():
33
- outputs = model.generate(
34
- inputs.input_ids,
35
- max_length=100,
36
- num_return_sequences=1,
37
- no_repeat_ngram_size=2,
38
- top_k=50,
39
- top_p=0.95,
40
- temperature=0.7
41
- )
42
 
43
  # Decode the generated text
44
  generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
1
  import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
3
 
4
  # Cache the model and tokenizer
5
  @st.cache_resource
6
  def load_model_and_tokenizer():
7
  model_name = "rajrakeshdr/IntelliSoc"
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
10
  return model, tokenizer
11
 
12
  # Load the model and tokenizer
 
24
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
25
 
26
  # Generate text
27
+ outputs = model.generate(
28
+ inputs.input_ids,
29
+ max_length=100,
30
+ num_return_sequences=1,
31
+ no_repeat_ngram_size=2,
32
+ top_k=50,
33
+ top_p=0.95,
34
+ temperature=0.7
35
+ )
 
36
 
37
  # Decode the generated text
38
  generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)