Spaces:
Sleeping
Sleeping
File size: 8,200 Bytes
b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a b550b34 6706d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import json
import plotly.graph_objects as go
from datetime import datetime
import pandas as pd
# Load class indices
with open("class_indices.json", "r") as f:
class_indices = json.load(f)
# Reverse the mapping for predictions
class_names = {v: k for k, v in class_indices.items()}
# Load the TFLite model
@st.cache_resource
def load_model():
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
return interpreter
interpreter = load_model()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Define the image preprocessing function
def preprocess_image(image, target_size=(224, 224)):
image = image.resize(target_size)
image = np.array(image) / 255.0
image = np.expand_dims(image, axis=0)
return image.astype(np.float32)
# Define prediction function with detailed output
def predict(image):
input_data = preprocess_image(image)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
# Get top 3 predictions
top_indices = np.argsort(output_data[0])[-3:][::-1]
predictions = []
for idx in top_indices:
predictions.append({
'class': class_names[idx],
'confidence': float(output_data[0][idx])
})
return predictions
# Custom CSS
st.set_page_config(
page_title="πΏ Smart Crop Disease Detective",
page_icon="π¬",
layout="wide",
initial_sidebar_state="expanded",
)
# Custom CSS
st.markdown("""
<style>
.main {
background-color: #f5f7f9;
}
.stButton>button {
background-color: #2d6a4f;
color: white;
border-radius: 10px;
padding: 0.5rem 1rem;
border: none;
width: 100%;
}
.stButton>button:hover {
background-color: #40916c;
border: none;
}
.prediction-box {
background-color: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.info-box {
background-color: #e9ecef;
padding: 15px;
border-radius: 5px;
margin: 10px 0;
}
.status-box {
padding: 10px;
border-radius: 5px;
margin: 10px 0;
text-align: center;
}
.header-container {
display: flex;
align-items: center;
justify-content: space-between;
padding: 1rem;
background-color: white;
border-radius: 10px;
margin-bottom: 2rem;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
# Session State initialization
if 'prediction_history' not in st.session_state:
st.session_state.prediction_history = []
# App Header
col1, col2, col3 = st.columns([1,2,1])
with col2:
st.markdown("""
<div style='text-align: center'>
<h1 style='color: #2d6a4f'>πΏ Smart Crop Disease Detective</h1>
<p style='color: #40916c; font-size: 1.2em;'>
Your AI-Powered Assistant for Crop Health Monitoring
</p>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.image("https://via.placeholder.com/250x150?text=Smart+Crop+AI", use_column_width=True)
st.markdown("### π Dashboard")
total_scans = len(st.session_state.prediction_history)
st.metric("Total Scans", total_scans)
st.markdown("### π― Features")
st.markdown("""
- π Real-time disease detection
- π Confidence scoring
- π Multiple disease possibilities
- πΎ Scan history tracking
- π± Treatment recommendations
""")
st.markdown("### π‘ Tips for Best Results")
st.info("""
1. Ensure good lighting
2. Focus on affected areas
3. Avoid blurry images
4. Include multiple angles
5. Clean lens before capture
""")
if st.button("Clear History"):
st.session_state.prediction_history = []
st.success("History cleared!")
# Main Content
main_col1, main_col2 = st.columns([2,3])
with main_col1:
st.markdown("### πΈ Upload Image")
uploaded_file = st.file_uploader(
"Choose a leaf image (JPG/PNG)",
type=["jpg", "png", "jpeg"],
help="Upload a clear image of the affected crop leaf"
)
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
analyze_btn = st.button("π Analyze Image")
if analyze_btn:
with st.spinner("π Analyzing image..."):
predictions = predict(image)
# Store prediction in history
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
st.session_state.prediction_history.append({
'timestamp': timestamp,
'predictions': predictions,
'filename': uploaded_file.name
})
with main_col2:
if uploaded_file and analyze_btn:
st.markdown("### π Analysis Results")
# Display confidence gauge for top prediction
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = predictions[0]['confidence'] * 100,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Confidence Level"},
gauge = {
'axis': {'range': [None, 100]},
'bar': {'color': "#2d6a4f"},
'steps': [
{'range': [0, 50], 'color': "#ff9999"},
{'range': [50, 75], 'color': "#ffff99"},
{'range': [75, 100], 'color': "#99ff99"}
]
}
))
st.plotly_chart(fig)
# Display predictions
for i, pred in enumerate(predictions, 1):
confidence_color = (
"#ff0000" if pred['confidence'] < 0.5
else "#ffa500" if pred['confidence'] < 0.7
else "#008000"
)
st.markdown(f"""
<div class="prediction-box">
<h4>Prediction {i}: {pred['class']}</h4>
<p style='color: {confidence_color}'>
Confidence: {pred['confidence']*100:.2f}%
</p>
</div>
""", unsafe_allow_html=True)
# Treatment Recommendations (example)
st.markdown("### π Treatment Recommendations")
st.markdown(f"""
<div class="info-box">
<h4>For {predictions[0]['class']}:</h4>
<ul>
<li>Isolate affected plants</li>
<li>Apply appropriate fungicide/pesticide</li>
<li>Improve air circulation</li>
<li>Monitor moisture levels</li>
</ul>
<p><em>Consult with a local agricultural expert for specific treatment plans.</em></p>
</div>
""", unsafe_allow_html=True)
# History Section
if st.session_state.prediction_history:
st.markdown("### π Scan History")
history_df = pd.DataFrame([
{
'Timestamp': h['timestamp'],
'Filename': h['filename'],
'Primary Prediction': h['predictions'][0]['class'],
'Confidence': f"{h['predictions'][0]['confidence']*100:.2f}%"
}
for h in st.session_state.prediction_history
])
st.dataframe(history_df, use_container_width=True)
# Footer
st.markdown("""
<div style='text-align: center; color: gray; padding: 20px;'>
<p>Developed with β€οΈ for Final Yr Project</p>
<p>Version 2.0 | Last Updated: 2024</p>
</div>
""", unsafe_allow_html=True)
|