File size: 2,446 Bytes
1f2b3fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import streamlit as st
from PIL import Image
import torch
from torchvision import transforms
import numpy as np
import os
from osgeo import gdal

# Load the pretrained model
@st.cache(allow_output_mutation=True)
def load_model():
    model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet',
                           pretrained=True, progress=True)
    model.eval()
    return model

# Function to load large TIFF images
def load_tiff_image(tiff_path):
    try:
        dataset = gdal.Open(tiff_path)
        if dataset is None:
            st.error("Failed to load the TIFF image. Please check the file format.")
            return None
        band = dataset.GetRasterBand(1)  # Assuming grayscale or single band
        image = band.ReadAsArray()
        return image
    except Exception as e:
        st.error(f"Error loading image: {e}")
        return None

# Preprocess image
def preprocess_image(image):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize((256, 256)),  # Resize image for model input
        transforms.Normalize(mean=[0.485], std=[0.229])  # Normalize
    ])
    image_tensor = transform(image).unsqueeze(0)  # Add batch dimension
    return image_tensor

# Post-process prediction to display
def postprocess_prediction(pred):
    pred = torch.sigmoid(pred)
    pred = pred.squeeze().detach().numpy()  # Remove batch dimension
    pred = (pred > 0.5).astype(np.uint8)  # Binary mask thresholding
    return pred

# Streamlit app
st.title("TIFF Image Upload and Model Prediction")

# Upload image
uploaded_file = st.file_uploader("Upload a large TIFF image (up to 5GB)", type=["tiff"])

if uploaded_file is not None:
    with open("temp_image.tiff", "wb") as f:
        f.write(uploaded_file.getbuffer())
    
    tiff_image = load_tiff_image("temp_image.tiff")
    
    if tiff_image is not None:
        st.write("Original Image")
        st.image(tiff_image, caption="Uploaded Image", use_column_width=True)
        
        model = load_model()
        
        image = Image.fromarray(tiff_image)
        image_tensor = preprocess_image(image)
        
        with torch.no_grad():
            prediction = model(image_tensor)
        
        pred_image = postprocess_prediction(prediction)
        
        st.write("Model Prediction")
        st.image(pred_image, caption="Predicted Image", use_column_width=True)
    
    os.remove("temp_image.tiff")