import streamlit as st from PIL import Image import torch from torchvision import transforms import numpy as np import os from osgeo import gdal # Load the pretrained model @st.cache(allow_output_mutation=True) def load_model(): model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet', pretrained=True, progress=True) model.eval() return model # Function to load large TIFF images def load_tiff_image(tiff_path): try: dataset = gdal.Open(tiff_path) if dataset is None: st.error("Failed to load the TIFF image. Please check the file format.") return None band = dataset.GetRasterBand(1) # Assuming grayscale or single band image = band.ReadAsArray() return image except Exception as e: st.error(f"Error loading image: {e}") return None # Preprocess image def preprocess_image(image): transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((256, 256)), # Resize image for model input transforms.Normalize(mean=[0.485], std=[0.229]) # Normalize ]) image_tensor = transform(image).unsqueeze(0) # Add batch dimension return image_tensor # Post-process prediction to display def postprocess_prediction(pred): pred = torch.sigmoid(pred) pred = pred.squeeze().detach().numpy() # Remove batch dimension pred = (pred > 0.5).astype(np.uint8) # Binary mask thresholding return pred # Streamlit app st.title("TIFF Image Upload and Model Prediction") # Upload image uploaded_file = st.file_uploader("Upload a large TIFF image (up to 5GB)", type=["tiff"]) if uploaded_file is not None: with open("temp_image.tiff", "wb") as f: f.write(uploaded_file.getbuffer()) tiff_image = load_tiff_image("temp_image.tiff") if tiff_image is not None: st.write("Original Image") st.image(tiff_image, caption="Uploaded Image", use_column_width=True) model = load_model() image = Image.fromarray(tiff_image) image_tensor = preprocess_image(image) with torch.no_grad(): prediction = model(image_tensor) pred_image = postprocess_prediction(prediction) st.write("Model Prediction") st.image(pred_image, caption="Predicted Image", use_column_width=True) os.remove("temp_image.tiff")