|
import torch
|
|
import math
|
|
|
|
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
|
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
|
from diffusers_helper.utils import repeat_to_batch_size
|
|
|
|
|
|
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
|
|
|
|
|
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
|
k = (y2 - y1) / (x2 - x1)
|
|
b = y1 - k * x1
|
|
mu = k * context_length + b
|
|
mu = min(mu, math.log(exp_max))
|
|
return mu
|
|
|
|
|
|
def get_flux_sigmas_from_mu(n, mu):
|
|
sigmas = torch.linspace(1, 0, steps=n + 1)
|
|
sigmas = flux_time_shift(sigmas, mu=mu)
|
|
return sigmas
|
|
|
|
|
|
@torch.inference_mode()
|
|
def sample_hunyuan(
|
|
transformer,
|
|
sampler='unipc',
|
|
initial_latent=None,
|
|
concat_latent=None,
|
|
strength=1.0,
|
|
width=512,
|
|
height=512,
|
|
frames=16,
|
|
real_guidance_scale=1.0,
|
|
distilled_guidance_scale=6.0,
|
|
guidance_rescale=0.0,
|
|
shift=None,
|
|
num_inference_steps=25,
|
|
batch_size=None,
|
|
generator=None,
|
|
prompt_embeds=None,
|
|
prompt_embeds_mask=None,
|
|
prompt_poolers=None,
|
|
negative_prompt_embeds=None,
|
|
negative_prompt_embeds_mask=None,
|
|
negative_prompt_poolers=None,
|
|
dtype=torch.bfloat16,
|
|
device=None,
|
|
negative_kwargs=None,
|
|
callback=None,
|
|
**kwargs,
|
|
):
|
|
device = device or transformer.device
|
|
|
|
if batch_size is None:
|
|
batch_size = int(prompt_embeds.shape[0])
|
|
|
|
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
|
|
|
B, C, T, H, W = latents.shape
|
|
seq_length = T * H * W // 4
|
|
|
|
if shift is None:
|
|
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
|
else:
|
|
mu = math.log(shift)
|
|
|
|
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
|
|
|
k_model = fm_wrapper(transformer)
|
|
|
|
if initial_latent is not None:
|
|
sigmas = sigmas * strength
|
|
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
|
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
|
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
|
|
|
if concat_latent is not None:
|
|
concat_latent = concat_latent.to(latents)
|
|
|
|
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
|
|
|
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
|
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
|
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
|
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
|
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
|
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
|
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
|
|
|
sampler_kwargs = dict(
|
|
dtype=dtype,
|
|
cfg_scale=real_guidance_scale,
|
|
cfg_rescale=guidance_rescale,
|
|
concat_latent=concat_latent,
|
|
positive=dict(
|
|
pooled_projections=prompt_poolers,
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_embeds_mask,
|
|
guidance=distilled_guidance,
|
|
**kwargs,
|
|
),
|
|
negative=dict(
|
|
pooled_projections=negative_prompt_poolers,
|
|
encoder_hidden_states=negative_prompt_embeds,
|
|
encoder_attention_mask=negative_prompt_embeds_mask,
|
|
guidance=distilled_guidance,
|
|
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
|
)
|
|
)
|
|
|
|
if sampler == 'unipc':
|
|
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
|
else:
|
|
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
|
|
|
return results
|
|
|