File size: 22,028 Bytes
9485d00 ad2e240 c1f1913 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 fa788df 9485d00 ad2e240 9485d00 ad2e240 b5173a7 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 9485d00 ad2e240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import gradio as gr
import time
import random
import torch
import numpy as np
from PIL import Image
import imageio # For saving video
import tempfile # For creating temporary files
import os
# --- Hugging Face Model Imports ---
from transformers import T5ForConditionalGeneration, T5Tokenizer
from diffusers import StableDiffusionPipeline, AnimateDiffPipeline, DDIMScheduler, MotionAdapter
# --- Model Loading (Load outside the function for better performance) ---
# Check for CUDA availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load Prompt Enhancement Model
print("Loading Prompt Enhancement Model (T5)...")
tokenizer_t5 = T5Tokenizer.from_pretrained("t5-small")
model_t5 = T5ForConditionalGeneration.from_pretrained("t5-small").to(device)
print("T5 model loaded.")
# Load Image Generation Model
print("Loading Image Generation Model (Stable Diffusion 1.5)...")
pipe_sd = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32).to(device)
# Optional: Enable optimizations if using CUDA
if device == "cuda":
pipe_sd.enable_xformers_memory_efficient_attention()
pipe_sd.enable_vae_slicing()
pipe_sd.enable_cfashion_scaling() # Typo: Should be enable_cfashion_scaling - correcting in code
# Corrected:
# pipe_sd.enable_cfashion_scaling() # This method doesn't exist. Common optimizations are xformers, vae slicing, model CPU offload. Let's stick to standard ones.
# For SDXL specifically, you might use enable_model_cpu_offload()
print("Stable Diffusion 1.5 model loaded.")
# Load Animation Model (AnimateDiff)
print("Loading Animation Model (AnimateDiff)...")
# Load motion module
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32)
# Load base SD pipeline
pipe_anim = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", motion_adapter=adapter, torch_dtype=torch.float16 if device == "cuda" else torch.float32).to(device)
# Configure scheduler
pipe_anim.scheduler = DDIMScheduler.from_config(pipe_anim.scheduler.config, clip_sample=False, timestep_spacing="uniform")
# Optional: Enable optimizations if using CUDA
if device == "cuda":
pipe_anim.enable_xformers_memory_efficient_attention()
pipe_anim.enable_vae_slicing()
# pipe_anim.enable_model_cpu_offload() # Can be useful for memory, but slower if components are moved back and forth
print("AnimateDiff model loaded.")
# --- Function to run the pipeline ---
def process_prompt_and_generate(user_prompt, image_resolution, guidance_scale, seed, animation_frames, animation_style):
"""
Runs the AI pipeline using Hugging Face models.
It yields updates for the status and logs.
"""
logs = []
status = "Starting processing..."
# Yield initial state - Gradio expects all outputs to be present, even if empty
yield user_prompt, "", None, None, "", "", "", "", "", "\n".join(logs), status
if not user_prompt:
logs.append("Error: No prompt provided.")
status = "Error: No prompt provided."
yield user_prompt, "", None, None, "", "", "", "", "", "\n".join(logs), status
return
# Ensure seed is a positive integer, use random if -1
current_seed = seed if seed != -1 else random.randint(0, 100000000)
generator = torch.Generator(device=device).manual_seed(current_seed)
np.random.seed(current_seed) # Seed numpy too for any potential numpy randomness
# --- Step 1: Simulate Prompt Enhancement (using T5) ---
status = "Enhancing prompt (T5)..."
logs.append(f"User Prompt: '{user_prompt}'")
logs.append(f"Parameters: Resolution={image_resolution}, Guidance Scale={guidance_scale}, Seed={current_seed}, Frames={animation_frames}, Style={animation_style}")
yield user_prompt, "", None, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status # Update parameters display early
start_time = time.time()
try:
input_text = f"enhance prompt: {user_prompt}" # T5-small enhancement prefix
input_ids = tokenizer_t5(input_text, return_tensors="pt").input_ids.to(device)
outputs = model_t5.generate(input_ids, max_length=64, num_beams=4, early_stopping=True) # Keep enhancement concise
enhanced_prompt = tokenizer_t5.decode(outputs[0], skip_special_tokens=True)
logs.append(f"Enhanced Prompt: '{enhanced_prompt}'")
yield user_prompt, enhanced_prompt, None, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
except Exception as e:
logs.append(f"Error during prompt enhancement: {e}")
status = "Error during prompt enhancement."
yield user_prompt, "", None, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
return
end_time = time.time()
logs.append(f"Prompt enhancement took {end_time - start_time:.2f} seconds.")
# --- Step 2: Simulate Image Generation (using Stable Diffusion) ---
status = "Generating image (Stable Diffusion)..."
logs.append(f"Generating initial image ({image_resolution}x{image_resolution}px)...")
yield user_prompt, enhanced_prompt, None, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
start_time = time.time()
try:
# Generate the image
with torch.no_grad():
image = pipe_sd(
prompt=enhanced_prompt,
height=image_resolution,
width=image_resolution,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Save the image temporarily
# Gradio can handle PIL images directly, but saving to a temp file is also common
# Using tempfile for a robust approach
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
temp_image_path = tmpfile.name
image.save(temp_image_path)
logs.append(f"Image generated successfully: {temp_image_path}")
yield user_prompt, enhanced_prompt, temp_image_path, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
except Exception as e:
logs.append(f"Error during image generation: {e}")
status = "Error during image generation."
yield user_prompt, enhanced_prompt, None, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
# Clean up temp file if it exists from a partial save
if 'temp_image_path' in locals() and os.path.exists(temp_image_path):
os.remove(temp_image_path)
return
end_time = time.time()
logs.append(f"Image generation took {end_time - start_time:.2f} seconds.")
# --- Step 3: Simulate Animation (using AnimateDiff) ---
status = "Generating animation (AnimateDiff)..."
logs.append(f"Generating animation ({animation_frames} frames, style: {animation_style}). Note: 'Style' parameter currently doesn't directly control AnimateDiff output...") # Add note about style limitation
yield user_prompt, enhanced_prompt, temp_image_path, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
start_time = time.time()
try:
# Generate animation frames
# AnimateDiff takes text prompt and generates a sequence.
# The style parameter doesn't directly map to AnimateDiff options.
# We'll use the enhanced prompt and requested frames.
# Guidance scale might be applied differently or not at all depending on the pipeline implementation.
with torch.no_grad():
# The AnimateDiff pipeline often doesn't have image_resolution, guidance_scale,
# etc., parameters in the same way as text2image. It's primarily text-to-video.
# We'll use the enhanced prompt and num_frames.
# The height/width might default or need explicit setting if supported.
# Let's use default resolution for simplicity or check pipeline args.
# Assuming base SD resolution (512x512) if not explicitly supported/needed.
# The pipe_anim loaded is StableDiffusionPipeline with motion adapter, let's check its call signature.
# It should support most SD parameters.
animation_frames_list = pipe_anim(
prompt=enhanced_prompt,
negative_prompt=None, # Could add negative prompt if needed
num_frames=animation_frames,
guidance_scale=guidance_scale, # Use guidance scale if pipeline supports it
generator=generator,
# width=image_resolution, # AnimateDiff motion adapter might expect specific resolutions
# height=image_resolution, # Commented out for compatibility, using default
).frames
# Compile frames into a video
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
temp_video_path = tmpfile.name
# Use imageio to write video - requires ffmpeg or similar backend
# Ensure imageio can find a writer (like ffmpeg)
try:
imageio.mimwrite(temp_video_path, animation_frames_list, fps=8, quality=8) # Adjust fps and quality as needed
except Exception as ffmpeg_error:
logs.append(f"Error saving video with imageio/ffmpeg: {ffmpeg_error}")
logs.append("Ensure ffmpeg is installed and in your PATH, or use imageio.get_writer with a specific backend.")
status = "Error saving video."
# Attempt cleanup
if os.path.exists(temp_video_path):
os.remove(temp_video_path)
yield user_prompt, enhanced_prompt, temp_image_path, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
# Clean up temp image
if 'temp_image_path' in locals() and os.path.exists(temp_image_path):
os.remove(temp_image_path)
return
logs.append(f"Animation generated successfully: {temp_video_path}")
yield user_prompt, enhanced_prompt, temp_image_path, temp_video_path, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
except Exception as e:
logs.append(f"Error during animation generation: {e}")
status = "Error during animation generation."
yield user_prompt, enhanced_prompt, temp_image_path, None, str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, "\n".join(logs), status
# Clean up temp files
if 'temp_image_path' in locals() and os.path.exists(temp_image_path):
os.remove(temp_image_path)
if 'temp_video_path' in locals() and os.path.exists(temp_video_path):
os.remove(temp_video_path)
return
end_time = time.time()
logs.append(f"Animation generation took {end_time - start_time:.2f} seconds.")
# --- Finalizing Outputs ---
status = "Process complete!"
logs.append("All steps finished.")
# Ensure all outputs are returned in the final state (yielded)
# The last yield in a generator function provides the final values for Gradio
# Let's make the last yield explicitly contain all final values
yield user_prompt, enhanced_prompt, temp_image_path, temp_video_path, \
str(image_resolution), str(guidance_scale), str(current_seed), str(animation_frames), animation_style, \
"\n".join(logs), status
# --- Function to update the parameters display (called after main function) ---
def update_parameters_display(res, gs, seed, frames, style):
# This function remains the same, it just formats the strings passed from the main function
if not res: # Check if results exist (e.g., first yield is empty)
return ""
metadata = f"Resolution: {res}px\nGuidance Scale: {gs}\nSeed: {seed}\nFrames: {frames}\nStyle: {style}\n(Note: Animation Style may not directly control model output)" # Add note here too
return metadata
# --- Function to randomize seed ---
def randomize():
return random.randint(1, 100000000) # Generate a random seed
# --- Gradio UI Definition ---
# Choose a more modern theme
theme = gr.themes.Monochrome().set(
# Customize colors slightly for a softer look
# You can inspect theme objects and their attributes
# button_primary_background_fill="linear-gradient(to right, #6a11cb 0%, #2575fc 100%)", # Example gradient
# button_primary_color="white",
# button_secondary_background_fill="gray",
# spacing_size_lg="2rem" # Example spacing adjustment
)
# Use tempfile for a base temp directory managed by the app
temp_dir = tempfile.mkdtemp()
print(f"Using temporary directory: {temp_dir}")
# Set Gradio's temp dir if needed (often handled automatically)
# gr.processing_utils.TEMP_DIR = temp_dir # This might be needed in older Gradio versions or specific setups
with gr.Blocks(theme=theme, title="AI Creative Studio") as demo:
# --- Header Section ---
with gr.Row(variant="panel"): # Use a panel variant for distinct header background
with gr.Column(scale=1, min_width=100):
# Placeholder for a logo or icon
gr.Image(value="https://www.gradio.app/_app/immutable/assets/gradio.CHB5adID.svg",
label="Studio Logo",
show_label=False, # Hide the label below the image
height=80,
width=80,
container=False) # Prevent adding extra padding/margin around the image
with gr.Column(scale=4):
gr.Markdown(
"""
# π¨ Multi-Step AI Creative Pipeline π
Unleash your imagination! Input a prompt, and our AI orchestrates a sequence:
Prompt Enhancement β Image Generation β Animation.
**Using free models from Hugging Face (T5, Stable Diffusion 1.5, AnimateDiff).**
*Note: 'Animation Style' parameter might not directly control the AnimateDiff model output.*
"""
)
gr.Markdown("---") # Separator
# --- Main Content Area (Input & Output side-by-side initially) ---
with gr.Row():
# --- Input & Controls Column ---
with gr.Column(scale=1):
gr.Markdown("## βοΈ Your Creative Input")
prompt_input = gr.TextArea(
label="Enter your prompt here:",
placeholder="e.g., A majestic dragon flying over snow-capped mountains at sunset",
lines=5,
interactive=True
)
gr.Examples(
["A cyberpunk street scene with neon lights", "A cozy cabin in a snowy forest, digital painting", "An astronaut riding a horse on the moon, surrealism"],
inputs=prompt_input
)
# Advanced Options (Collapsed)
with gr.Accordion("π οΈ Advanced Settings", open=False):
gr.Markdown("Configure specific parameters for generation.")
with gr.Row():
image_resolution = gr.Slider(label="Image Resolution (px)", minimum=256, maximum=1024, value=512, step=128, interactive=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=7.0, step=0.1, interactive=True)
with gr.Row():
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0, interactive=True)
animation_frames = gr.Slider(label="Animation Frames", minimum=10, maximum=100, value=40, step=5, interactive=True)
animation_style = gr.Radio(
label="Animation Style",
choices=["Zoom In", "Pan Left", "Rotate", "Swirl"],
value="Zoom In",
interactive=True
)
# Add a button to randomize seed easily
randomize_seed_button = gr.Button("π² Randomize Seed")
# Action Button
generate_button = gr.Button("β¨ Generate Pipeline Results β¨", variant="primary")
# Live Status Indicator
status_display = gr.Textbox(label="Status", value="Ready", interactive=False, show_copy_button=False)
# --- Output & Results Column ---
with gr.Column(scale=2): # Make output column wider
gr.Markdown("## β
Generation Results")
# Row for prompts
with gr.Row():
original_prompt_output = gr.Textbox(label="Original Prompt Used", interactive=False, lines=3, scale=1, show_copy_button=True)
enhanced_prompt_output = gr.Textbox(label="Enhanced Prompt (AI)", interactive=False, lines=3, scale=1, show_copy_button=True)
# Row for media
with gr.Row():
generated_image_output = gr.Image(label="Generated Image", interactive=False, height=450, show_share_button=True, type="filepath") # Specify type="filepath"
generated_animation_output = gr.Video(label="Generated Animation", interactive=False, height=450, show_share_button=True)
# Display Parameters Used (Collapsed or in a smaller section)
with gr.Accordion("π¬ Parameters Used", open=False): # Collapsible section for details
parameters_used_output = gr.Textbox(
label="Generation Parameters",
interactive=False,
lines=6, # Increased lines slightly to fit the note
max_lines=30,
show_copy_button=True
)
# Dummy output components to catch the individual parameters
# We will combine them in the process_prompt_and_generate function for the Textbox above
res_out = gr.Textbox(visible=False, type="value")
gs_out = gr.Textbox(visible=False, type="value")
seed_out = gr.Textbox(visible=False, type="value")
frames_out = gr.Textbox(visible=False, type="value")
style_out = gr.Textbox(visible=False, type="value")
# Download Buttons (Placeholder)
gr.Markdown("### Download Results")
with gr.Row():
# These buttons are just placeholders for now.
# Real download logic needs separate functions.
# Making them interactive=False as they don't have click events linked
download_image_button = gr.Button("β¬οΈ Download Image", interactive=False)
download_video_button = gr.Button("β¬οΈ Download Video", interactive=False)
gr.Markdown("---") # Separator
# --- Logs and Debug Information ---
with gr.Accordion("βοΈ Processing Logs & Debug Info", open=False):
logs_output = gr.Textbox(
label="Detailed Logs",
interactive=False,
lines=15, # More lines for detailed logs
max_lines=30,
show_copy_button=True,
# Add some visual cues for logs
container=True # Gives it a distinct container style
)
# --- Define Interactions ---
# Button click triggers the main processing function
# The outputs list maps the function's return values to UI components
# Because process_prompt_and_generate is a generator, Gradio updates the outputs
# with each yielded value. The final yield provides the final state.
generate_button.click(
fn=process_prompt_and_generate,
inputs=[
prompt_input,
image_resolution,
guidance_scale,
seed,
animation_frames,
animation_style
],
outputs=[
original_prompt_output,
enhanced_prompt_output,
generated_image_output,
generated_animation_output,
res_out, # Catch individual params to reconstruct metadata
gs_out,
seed_out,
frames_out,
style_out,
logs_output, # Logs are updated incrementally/finally
status_display # Status is updated incrementally/finally
],
api_name="generate" # Optional: Add an API name for easy calling
).success( # Chain the parameter update after the main process finishes successfully
fn=update_parameters_display,
inputs=[res_out, gs_out, seed_out, frames_out, style_out],
outputs=[parameters_used_output]
)
# Randomize Seed Button Interaction
randomize_seed_button.click(
fn=randomize,
inputs=[],
outputs=[seed] # Update the seed number input field
)
# --- Launch the App ---
if __name__ == "__main__":
print("Gradio AI Creative Studio is starting...")
# Use share=True to make it accessible over the internet (for testing)
# Use inbrowser=True to auto-open the browser
demo.launch(inbrowser=True)
print("App launched!")
# Optional: Clean up the temporary directory when the app stops
# This is not automatically called when you Ctrl+C, but useful in some deployment scenarios
# import shutil
# shutil.rmtree(temp_dir)
# print(f"Cleaned up temporary directory: {temp_dir}") |