rakhlin commited on
Commit
a9d7d29
·
1 Parent(s): d3cbff2

Upload 9 files

Browse files
tts/vocoder_models--en--ljspeech--hifigan_v2/config.json ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "run_name": "hifigan",
3
+ "run_description": "universal hifigan trained on LibriTTS with no spectrogram normalization and using log() for scaling instead of log10()",
4
+
5
+
6
+ // AUDIO PARAMETERS
7
+ "audio":{
8
+ "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
9
+ "win_length": 1024, // stft window length in ms.
10
+ "hop_length": 256, // stft window hop-lengh in ms.
11
+ "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
12
+ "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
13
+
14
+ // Audio processing parameters
15
+ "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
16
+ "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
17
+ "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
18
+ "log_func": "np.log",
19
+
20
+ // Silence trimming
21
+ "do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
22
+ "trim_db": 60, // threshold for timming silence. Set this according to your dataset.
23
+
24
+ // MelSpectrogram parameters
25
+ "num_mels": 80, // size of the mel spec frame.
26
+ "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
27
+ "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
28
+ "spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
29
+
30
+ // Normalization parameters
31
+ "signal_norm": false, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
32
+ "min_level_db": -100, // lower bound for normalization
33
+ "symmetric_norm": true, // move normalization to range [-1, 1]
34
+ "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
35
+ "clip_norm": true, // clip normalized values into the range.
36
+ "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
37
+ },
38
+
39
+ // DISTRIBUTED TRAINING
40
+ "distributed":{
41
+ "backend": "nccl",
42
+ "url": "tcp:\/\/localhost:54324"
43
+ },
44
+
45
+ // MODEL PARAMETERS
46
+ "use_pqmf": false,
47
+
48
+ // LOSS PARAMETERS
49
+ "use_stft_loss": false,
50
+ "use_subband_stft_loss": false,
51
+ "use_mse_gan_loss": true,
52
+ "use_hinge_gan_loss": false,
53
+ "use_feat_match_loss": true, // use only with melgan discriminators
54
+ "use_l1_spec_loss": true,
55
+
56
+ // loss weights
57
+ "stft_loss_weight": 0,
58
+ "subband_stft_loss_weight": 0,
59
+ "mse_G_loss_weight": 1,
60
+ "hinge_G_loss_weight": 0,
61
+ "feat_match_loss_weight": 10,
62
+ "l1_spec_loss_weight": 45,
63
+
64
+ // multiscale stft loss parameters
65
+ // "stft_loss_params": {
66
+ // "n_ffts": [1024, 2048, 512],
67
+ // "hop_lengths": [120, 240, 50],
68
+ // "win_lengths": [600, 1200, 240]
69
+ // },
70
+
71
+ "l1_spec_loss_params": {
72
+ "use_mel": true,
73
+ "sample_rate": 16000,
74
+ "n_fft": 1024,
75
+ "hop_length": 256,
76
+ "win_length": 1024,
77
+ "n_mels": 80,
78
+ "mel_fmin": 0.0,
79
+ "mel_fmax": null
80
+ },
81
+
82
+ "target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch
83
+
84
+ // DISCRIMINATOR
85
+ "discriminator_model": "hifigan_discriminator",
86
+ //"discriminator_model_params":{
87
+ // "peroids": [2, 3, 5, 7, 11],
88
+ // "base_channels": 16,
89
+ // "max_channels":512,
90
+ // "downsample_factors":[4, 4, 4]
91
+ //},
92
+ "steps_to_start_discriminator": 0, // steps required to start GAN trainining.1
93
+
94
+ // GENERATOR
95
+ "generator_model": "hifigan_generator",
96
+ "generator_model_params": {
97
+ "resblock_type": "1",
98
+ "upsample_factors": [8,8,2,2],
99
+ "upsample_kernel_sizes": [16,16,4,4],
100
+ "upsample_initial_channel": 128,
101
+ "resblock_kernel_sizes": [3,7,11],
102
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]]
103
+ },
104
+
105
+ // DATASET
106
+ "data_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/vo_voice_quality_transformation/",
107
+ "feature_path": null,
108
+ // "feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/",
109
+ "seq_len": 8192,
110
+ "pad_short": 2000,
111
+ "conv_pad": 0,
112
+ "use_noise_augment": false,
113
+ "use_cache": true,
114
+ "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
115
+
116
+ // TRAINING
117
+ "batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
118
+
119
+ // VALIDATION
120
+ "run_eval": true,
121
+ "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
122
+ "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
123
+
124
+ // OPTIMIZER
125
+ "epochs": 10000, // total number of epochs to train.
126
+ "wd": 0.0, // Weight decay weight.
127
+ "gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0
128
+ "disc_clip_grad": -1, // Discriminator gradient clipping threshold.
129
+ // "lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
130
+ // "lr_scheduler_gen_params": {
131
+ // "gamma": 0.999,
132
+ // "last_epoch": -1
133
+ // },
134
+ // "lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
135
+ // "lr_scheduler_disc_params": {
136
+ // "gamma": 0.999,
137
+ // "last_epoch": -1
138
+ // },
139
+ "lr_gen": 0.00001, // Initial learning rate. If Noam decay is active, maximum learning rate.
140
+ "lr_disc": 0.00001,
141
+
142
+ // TENSORBOARD and LOGGING
143
+ "print_step": 25, // Number of steps to log traning on console.
144
+ "print_eval": false, // If True, it prints loss values for each step in eval run.
145
+ "save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
146
+ "checkpoint": true, // If true, it saves checkpoints per "save_step"
147
+ "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
148
+
149
+ // DATA LOADING
150
+ "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
151
+ "num_val_loader_workers": 4, // number of evaluation data loader processes.
152
+ "eval_split_size": 10,
153
+
154
+ // PATHS
155
+ "output_path": "/home/erogol/gdrive/Trainings/sam/"
156
+ }
157
+
158
+
tts/vocoder_models--en--ljspeech--hifigan_v2/model_file.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4047e93886faa1aba11948efa71f59dcb0ec9117e286660e59b91892ef98d129
3
+ size 3794153
tts/vocoder_models--en--ljspeech--multiband-melgan/config.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_path": "/home/erogol/Models/LJSpeech/",
3
+ "logger_uri": null,
4
+ "run_name": "multiband-melgan",
5
+ "project_name": null,
6
+ "run_description": "multiband melgan mean-var scaling",
7
+ "print_step": 25,
8
+ "plot_step": 100,
9
+ "model_param_stats": false,
10
+ "wandb_entity": null,
11
+ "dashboard_logger": "tensorboard",
12
+ "log_model_step": null,
13
+ "save_step": 25000,
14
+ "save_n_checkpoints": 5,
15
+ "save_checkpoints": true,
16
+ "save_all_best": false,
17
+ "save_best_after": 10000,
18
+ "target_loss": "avg_G_loss",
19
+ "print_eval": false,
20
+ "test_delay_epochs": 10,
21
+ "run_eval": true,
22
+ "run_eval_steps": null,
23
+ "distributed_backend": "nccl",
24
+ "distributed_url": "tcp://localhost:54321",
25
+ "mixed_precision": false,
26
+ "epochs": 10000,
27
+ "batch_size": 64,
28
+ "eval_batch_size": 16,
29
+ "grad_clip": null,
30
+ "scheduler_after_epoch": true,
31
+ "lr": 0.001,
32
+ "optimizer": "AdamW",
33
+ "optimizer_params": {
34
+ "betas": [
35
+ 0.8,
36
+ 0.99
37
+ ],
38
+ "weight_decay": 0.0
39
+ },
40
+ "lr_scheduler": null,
41
+ "lr_scheduler_params": {},
42
+ "use_grad_scaler": false,
43
+ "cudnn_enable": true,
44
+ "cudnn_deterministic": false,
45
+ "cudnn_benchmark": true,
46
+ "training_seed": 54321,
47
+ "model": "multiband_melgan",
48
+ "num_loader_workers": 4,
49
+ "num_eval_loader_workers": 0,
50
+ "use_noise_augment": false,
51
+ "audio": {
52
+ "fft_size": 1024,
53
+ "win_length": 1024,
54
+ "hop_length": 256,
55
+ "frame_shift_ms": null,
56
+ "frame_length_ms": null,
57
+ "stft_pad_mode": "reflect",
58
+ "sample_rate": 22050,
59
+ "resample": false,
60
+ "preemphasis": 0.0,
61
+ "ref_level_db": 0,
62
+ "do_sound_norm": false,
63
+ "log_func": "np.log10",
64
+ "do_trim_silence": true,
65
+ "trim_db": 60,
66
+ "do_rms_norm": false,
67
+ "db_level": null,
68
+ "power": 1.5,
69
+ "griffin_lim_iters": 60,
70
+ "num_mels": 80,
71
+ "mel_fmin": 50.0,
72
+ "mel_fmax": 7600.0,
73
+ "spec_gain": 1,
74
+ "do_amp_to_db_linear": true,
75
+ "do_amp_to_db_mel": true,
76
+ "pitch_fmax": 640.0,
77
+ "pitch_fmin": 0.0,
78
+ "signal_norm": true,
79
+ "min_level_db": -100,
80
+ "symmetric_norm": true,
81
+ "max_norm": 4.0,
82
+ "clip_norm": true,
83
+ "stats_path": "C:/Users/Torch/AppData/Local\\tts\\vocoder_models--en--ljspeech--multiband-melgan\\scale_stats.npy"
84
+ },
85
+ "eval_split_size": 10,
86
+ "data_path": "/home/erogol/Data/LJSpeech-1.1/wavs/",
87
+ "feature_path": null,
88
+ "seq_len": 16384,
89
+ "pad_short": 2000,
90
+ "conv_pad": 0,
91
+ "use_cache": true,
92
+ "wd": 0.0,
93
+ "use_stft_loss": true,
94
+ "use_subband_stft_loss": true,
95
+ "use_mse_gan_loss": true,
96
+ "use_hinge_gan_loss": false,
97
+ "use_feat_match_loss": false,
98
+ "use_l1_spec_loss": false,
99
+ "stft_loss_weight": 0.5,
100
+ "subband_stft_loss_weight": 0.5,
101
+ "mse_G_loss_weight": 2.5,
102
+ "hinge_G_loss_weight": 2.5,
103
+ "feat_match_loss_weight": 25.0,
104
+ "l1_spec_loss_weight": 0.0,
105
+ "stft_loss_params": {
106
+ "n_ffts": [
107
+ 1024,
108
+ 2048,
109
+ 512
110
+ ],
111
+ "hop_lengths": [
112
+ 120,
113
+ 240,
114
+ 50
115
+ ],
116
+ "win_lengths": [
117
+ 600,
118
+ 1200,
119
+ 240
120
+ ]
121
+ },
122
+ "l1_spec_loss_params": {
123
+ "use_mel": true,
124
+ "sample_rate": 22050,
125
+ "n_fft": 1024,
126
+ "hop_length": 256,
127
+ "win_length": 1024,
128
+ "n_mels": 80,
129
+ "mel_fmin": 0.0,
130
+ "mel_fmax": null
131
+ },
132
+ "lr_gen": 0.0001,
133
+ "lr_disc": 0.0001,
134
+ "lr_scheduler_gen": "MultiStepLR",
135
+ "lr_scheduler_gen_params": {
136
+ "gamma": 0.5,
137
+ "milestones": [
138
+ 100000,
139
+ 200000,
140
+ 300000,
141
+ 400000,
142
+ 500000,
143
+ 600000
144
+ ]
145
+ },
146
+ "lr_scheduler_disc": "MultiStepLR",
147
+ "lr_scheduler_disc_params": {
148
+ "gamma": 0.5,
149
+ "milestones": [
150
+ 100000,
151
+ 200000,
152
+ 300000,
153
+ 400000,
154
+ 500000,
155
+ 600000
156
+ ]
157
+ },
158
+ "use_pqmf": true,
159
+ "diff_samples_for_G_and_D": false,
160
+ "discriminator_model": "melgan_multiscale_discriminator",
161
+ "discriminator_model_params": {
162
+ "base_channels": 16,
163
+ "max_channels": 512,
164
+ "downsample_factors": [
165
+ 4,
166
+ 4,
167
+ 4
168
+ ]
169
+ },
170
+ "generator_model": "multiband_melgan_generator",
171
+ "generator_model_params": {
172
+ "upsample_factors": [
173
+ 8,
174
+ 4,
175
+ 2
176
+ ],
177
+ "num_res_blocks": 4
178
+ },
179
+ "steps_to_start_discriminator": true,
180
+ "subband_stft_loss_params": {
181
+ "n_ffts": [
182
+ 384,
183
+ 683,
184
+ 171
185
+ ],
186
+ "hop_lengths": [
187
+ 30,
188
+ 60,
189
+ 10
190
+ ],
191
+ "win_lengths": [
192
+ 150,
193
+ 300,
194
+ 60
195
+ ]
196
+ }
197
+ }
tts/vocoder_models--en--ljspeech--multiband-melgan/model_file.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56f16cee42bef70a2d75b08f9b9ea952c9ee0ccf76dd88a91d51e3ca4c11b449
3
+ size 82831385
tts/vocoder_models--en--ljspeech--multiband-melgan/scale_stats.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c4a45b935563157509ddbff09f59e4ffea35e1d07f3bbf87ec21484cb275c4a
3
+ size 10491
tts/vocoder_models--en--ljspeech--univnet/config.json ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_path": "/home/ubuntu/TTS/recipes/ljspeech/univnet",
3
+ "logger_uri": null,
4
+ "run_name": "",
5
+ "project_name": null,
6
+ "run_description": "",
7
+ "print_step": 25,
8
+ "plot_step": 100,
9
+ "model_param_stats": false,
10
+ "wandb_entity": null,
11
+ "dashboard_logger": "tensorboard",
12
+ "log_model_step": null,
13
+ "save_step": 10000,
14
+ "save_n_checkpoints": 5,
15
+ "save_checkpoints": true,
16
+ "save_all_best": false,
17
+ "save_best_after": 10000,
18
+ "target_loss": "loss_0",
19
+ "print_eval": false,
20
+ "test_delay_epochs": -1,
21
+ "run_eval": true,
22
+ "run_eval_steps": null,
23
+ "distributed_backend": "nccl",
24
+ "distributed_url": "tcp://localhost:54321",
25
+ "mixed_precision": false,
26
+ "epochs": 1000,
27
+ "batch_size": 64,
28
+ "eval_batch_size": 16,
29
+ "grad_clip": null,
30
+ "scheduler_after_epoch": false,
31
+ "lr": 0.001,
32
+ "optimizer": "AdamW",
33
+ "optimizer_params": {
34
+ "betas": [
35
+ 0.5,
36
+ 0.9
37
+ ],
38
+ "weight_decay": 0.0
39
+ },
40
+ "lr_scheduler": null,
41
+ "lr_scheduler_params": {},
42
+ "use_grad_scaler": false,
43
+ "cudnn_enable": true,
44
+ "cudnn_deterministic": false,
45
+ "cudnn_benchmark": false,
46
+ "training_seed": 54321,
47
+ "model": "univnet",
48
+ "num_loader_workers": 4,
49
+ "num_eval_loader_workers": 4,
50
+ "use_noise_augment": true,
51
+ "audio": {
52
+ "fft_size": 1024,
53
+ "win_length": 1024,
54
+ "hop_length": 256,
55
+ "frame_shift_ms": null,
56
+ "frame_length_ms": null,
57
+ "stft_pad_mode": "reflect",
58
+ "sample_rate": 22050,
59
+ "resample": false,
60
+ "preemphasis": 0.0,
61
+ "ref_level_db": 20,
62
+ "do_sound_norm": false,
63
+ "log_func": "np.log10",
64
+ "do_trim_silence": true,
65
+ "trim_db": 60,
66
+ "do_rms_norm": false,
67
+ "db_level": null,
68
+ "power": 1.5,
69
+ "griffin_lim_iters": 60,
70
+ "num_mels": 80,
71
+ "mel_fmin": 50.0,
72
+ "mel_fmax": 7600.0,
73
+ "spec_gain": 1,
74
+ "do_amp_to_db_linear": true,
75
+ "do_amp_to_db_mel": true,
76
+ "pitch_fmax": 640.0,
77
+ "pitch_fmin": 1.0,
78
+ "signal_norm": true,
79
+ "min_level_db": -100,
80
+ "symmetric_norm": true,
81
+ "max_norm": 4.0,
82
+ "clip_norm": true,
83
+ "stats_path": "C:/Users/Torch/AppData/Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy"
84
+ },
85
+ "eval_split_size": 10,
86
+ "data_path": "/home/ubuntu/TTS/recipes/ljspeech/univnet/../LJSpeech-1.1/wavs/",
87
+ "feature_path": "/home/ubuntu/TTS/recipes/ljspeech/univnet/../LJSpeech-1.1/specs/mel/",
88
+ "seq_len": 8192,
89
+ "pad_short": 2000,
90
+ "conv_pad": 0,
91
+ "use_cache": false,
92
+ "wd": 0.0,
93
+ "use_stft_loss": true,
94
+ "use_subband_stft_loss": false,
95
+ "use_mse_gan_loss": true,
96
+ "use_hinge_gan_loss": false,
97
+ "use_feat_match_loss": false,
98
+ "use_l1_spec_loss": false,
99
+ "stft_loss_weight": 2.5,
100
+ "subband_stft_loss_weight": 0.0,
101
+ "mse_G_loss_weight": 1.0,
102
+ "hinge_G_loss_weight": 0.0,
103
+ "feat_match_loss_weight": 0.0,
104
+ "l1_spec_loss_weight": 0.0,
105
+ "stft_loss_params": {
106
+ "n_ffts": [
107
+ 1024,
108
+ 2048,
109
+ 512
110
+ ],
111
+ "hop_lengths": [
112
+ 120,
113
+ 240,
114
+ 50
115
+ ],
116
+ "win_lengths": [
117
+ 600,
118
+ 1200,
119
+ 240
120
+ ]
121
+ },
122
+ "l1_spec_loss_params": {
123
+ "use_mel": true,
124
+ "sample_rate": 22050,
125
+ "n_fft": 1024,
126
+ "hop_length": 256,
127
+ "win_length": 1024,
128
+ "n_mels": 80,
129
+ "mel_fmin": 0.0,
130
+ "mel_fmax": null
131
+ },
132
+ "lr_gen": 0.0001,
133
+ "lr_disc": 0.0001,
134
+ "lr_scheduler_gen": null,
135
+ "lr_scheduler_gen_params": {
136
+ "gamma": 0.999,
137
+ "last_epoch": -1
138
+ },
139
+ "lr_scheduler_disc": null,
140
+ "lr_scheduler_disc_params": {
141
+ "gamma": 0.999,
142
+ "last_epoch": -1
143
+ },
144
+ "use_pqmf": false,
145
+ "diff_samples_for_G_and_D": false,
146
+ "discriminator_model": "univnet_discriminator",
147
+ "generator_model": "univnet_generator",
148
+ "generator_model_params": {
149
+ "in_channels": 64,
150
+ "out_channels": 1,
151
+ "hidden_channels": 32,
152
+ "cond_channels": 80,
153
+ "upsample_factors": [
154
+ 8,
155
+ 8,
156
+ 4
157
+ ],
158
+ "lvc_layers_each_block": 4,
159
+ "lvc_kernel_size": 3,
160
+ "kpnet_hidden_channels": 64,
161
+ "kpnet_conv_size": 3,
162
+ "dropout": 0.0
163
+ },
164
+ "steps_to_start_discriminator": 100000
165
+ }
tts/vocoder_models--en--ljspeech--univnet/model_file.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7350b5a0527507d97fafcf155e25c9b56adee4bfeb5d37d445cb45fdc48f3ca4
3
+ size 675105017
tts/vocoder_models--en--ljspeech--univnet/scale_stats.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20389c9a2e54ec45baab12a8e4d12b65e1eb24d055b50214db6cd45f779be18
3
+ size 10700
tts/wavlm/WavLM-Large.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fb4b3c3e6aa567f0a997b30855859cb81528ee8078802af439f7b2da0bf100f
3
+ size 1261965425