Upload 9 files
Browse files- tts/vocoder_models--en--ljspeech--hifigan_v2/config.json +158 -0
- tts/vocoder_models--en--ljspeech--hifigan_v2/model_file.pth +3 -0
- tts/vocoder_models--en--ljspeech--multiband-melgan/config.json +197 -0
- tts/vocoder_models--en--ljspeech--multiband-melgan/model_file.pth +3 -0
- tts/vocoder_models--en--ljspeech--multiband-melgan/scale_stats.npy +3 -0
- tts/vocoder_models--en--ljspeech--univnet/config.json +165 -0
- tts/vocoder_models--en--ljspeech--univnet/model_file.pth +3 -0
- tts/vocoder_models--en--ljspeech--univnet/scale_stats.npy +3 -0
- tts/wavlm/WavLM-Large.pt +3 -0
tts/vocoder_models--en--ljspeech--hifigan_v2/config.json
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"run_name": "hifigan",
|
3 |
+
"run_description": "universal hifigan trained on LibriTTS with no spectrogram normalization and using log() for scaling instead of log10()",
|
4 |
+
|
5 |
+
|
6 |
+
// AUDIO PARAMETERS
|
7 |
+
"audio":{
|
8 |
+
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
9 |
+
"win_length": 1024, // stft window length in ms.
|
10 |
+
"hop_length": 256, // stft window hop-lengh in ms.
|
11 |
+
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
12 |
+
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
13 |
+
|
14 |
+
// Audio processing parameters
|
15 |
+
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
16 |
+
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
17 |
+
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
18 |
+
"log_func": "np.log",
|
19 |
+
|
20 |
+
// Silence trimming
|
21 |
+
"do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
22 |
+
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
23 |
+
|
24 |
+
// MelSpectrogram parameters
|
25 |
+
"num_mels": 80, // size of the mel spec frame.
|
26 |
+
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
27 |
+
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
28 |
+
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
|
29 |
+
|
30 |
+
// Normalization parameters
|
31 |
+
"signal_norm": false, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
32 |
+
"min_level_db": -100, // lower bound for normalization
|
33 |
+
"symmetric_norm": true, // move normalization to range [-1, 1]
|
34 |
+
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
35 |
+
"clip_norm": true, // clip normalized values into the range.
|
36 |
+
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
37 |
+
},
|
38 |
+
|
39 |
+
// DISTRIBUTED TRAINING
|
40 |
+
"distributed":{
|
41 |
+
"backend": "nccl",
|
42 |
+
"url": "tcp:\/\/localhost:54324"
|
43 |
+
},
|
44 |
+
|
45 |
+
// MODEL PARAMETERS
|
46 |
+
"use_pqmf": false,
|
47 |
+
|
48 |
+
// LOSS PARAMETERS
|
49 |
+
"use_stft_loss": false,
|
50 |
+
"use_subband_stft_loss": false,
|
51 |
+
"use_mse_gan_loss": true,
|
52 |
+
"use_hinge_gan_loss": false,
|
53 |
+
"use_feat_match_loss": true, // use only with melgan discriminators
|
54 |
+
"use_l1_spec_loss": true,
|
55 |
+
|
56 |
+
// loss weights
|
57 |
+
"stft_loss_weight": 0,
|
58 |
+
"subband_stft_loss_weight": 0,
|
59 |
+
"mse_G_loss_weight": 1,
|
60 |
+
"hinge_G_loss_weight": 0,
|
61 |
+
"feat_match_loss_weight": 10,
|
62 |
+
"l1_spec_loss_weight": 45,
|
63 |
+
|
64 |
+
// multiscale stft loss parameters
|
65 |
+
// "stft_loss_params": {
|
66 |
+
// "n_ffts": [1024, 2048, 512],
|
67 |
+
// "hop_lengths": [120, 240, 50],
|
68 |
+
// "win_lengths": [600, 1200, 240]
|
69 |
+
// },
|
70 |
+
|
71 |
+
"l1_spec_loss_params": {
|
72 |
+
"use_mel": true,
|
73 |
+
"sample_rate": 16000,
|
74 |
+
"n_fft": 1024,
|
75 |
+
"hop_length": 256,
|
76 |
+
"win_length": 1024,
|
77 |
+
"n_mels": 80,
|
78 |
+
"mel_fmin": 0.0,
|
79 |
+
"mel_fmax": null
|
80 |
+
},
|
81 |
+
|
82 |
+
"target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch
|
83 |
+
|
84 |
+
// DISCRIMINATOR
|
85 |
+
"discriminator_model": "hifigan_discriminator",
|
86 |
+
//"discriminator_model_params":{
|
87 |
+
// "peroids": [2, 3, 5, 7, 11],
|
88 |
+
// "base_channels": 16,
|
89 |
+
// "max_channels":512,
|
90 |
+
// "downsample_factors":[4, 4, 4]
|
91 |
+
//},
|
92 |
+
"steps_to_start_discriminator": 0, // steps required to start GAN trainining.1
|
93 |
+
|
94 |
+
// GENERATOR
|
95 |
+
"generator_model": "hifigan_generator",
|
96 |
+
"generator_model_params": {
|
97 |
+
"resblock_type": "1",
|
98 |
+
"upsample_factors": [8,8,2,2],
|
99 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
100 |
+
"upsample_initial_channel": 128,
|
101 |
+
"resblock_kernel_sizes": [3,7,11],
|
102 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]]
|
103 |
+
},
|
104 |
+
|
105 |
+
// DATASET
|
106 |
+
"data_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/vo_voice_quality_transformation/",
|
107 |
+
"feature_path": null,
|
108 |
+
// "feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/",
|
109 |
+
"seq_len": 8192,
|
110 |
+
"pad_short": 2000,
|
111 |
+
"conv_pad": 0,
|
112 |
+
"use_noise_augment": false,
|
113 |
+
"use_cache": true,
|
114 |
+
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
115 |
+
|
116 |
+
// TRAINING
|
117 |
+
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
118 |
+
|
119 |
+
// VALIDATION
|
120 |
+
"run_eval": true,
|
121 |
+
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
|
122 |
+
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
123 |
+
|
124 |
+
// OPTIMIZER
|
125 |
+
"epochs": 10000, // total number of epochs to train.
|
126 |
+
"wd": 0.0, // Weight decay weight.
|
127 |
+
"gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0
|
128 |
+
"disc_clip_grad": -1, // Discriminator gradient clipping threshold.
|
129 |
+
// "lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
130 |
+
// "lr_scheduler_gen_params": {
|
131 |
+
// "gamma": 0.999,
|
132 |
+
// "last_epoch": -1
|
133 |
+
// },
|
134 |
+
// "lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
135 |
+
// "lr_scheduler_disc_params": {
|
136 |
+
// "gamma": 0.999,
|
137 |
+
// "last_epoch": -1
|
138 |
+
// },
|
139 |
+
"lr_gen": 0.00001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
140 |
+
"lr_disc": 0.00001,
|
141 |
+
|
142 |
+
// TENSORBOARD and LOGGING
|
143 |
+
"print_step": 25, // Number of steps to log traning on console.
|
144 |
+
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
145 |
+
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
146 |
+
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
147 |
+
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
148 |
+
|
149 |
+
// DATA LOADING
|
150 |
+
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
151 |
+
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
152 |
+
"eval_split_size": 10,
|
153 |
+
|
154 |
+
// PATHS
|
155 |
+
"output_path": "/home/erogol/gdrive/Trainings/sam/"
|
156 |
+
}
|
157 |
+
|
158 |
+
|
tts/vocoder_models--en--ljspeech--hifigan_v2/model_file.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4047e93886faa1aba11948efa71f59dcb0ec9117e286660e59b91892ef98d129
|
3 |
+
size 3794153
|
tts/vocoder_models--en--ljspeech--multiband-melgan/config.json
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"output_path": "/home/erogol/Models/LJSpeech/",
|
3 |
+
"logger_uri": null,
|
4 |
+
"run_name": "multiband-melgan",
|
5 |
+
"project_name": null,
|
6 |
+
"run_description": "multiband melgan mean-var scaling",
|
7 |
+
"print_step": 25,
|
8 |
+
"plot_step": 100,
|
9 |
+
"model_param_stats": false,
|
10 |
+
"wandb_entity": null,
|
11 |
+
"dashboard_logger": "tensorboard",
|
12 |
+
"log_model_step": null,
|
13 |
+
"save_step": 25000,
|
14 |
+
"save_n_checkpoints": 5,
|
15 |
+
"save_checkpoints": true,
|
16 |
+
"save_all_best": false,
|
17 |
+
"save_best_after": 10000,
|
18 |
+
"target_loss": "avg_G_loss",
|
19 |
+
"print_eval": false,
|
20 |
+
"test_delay_epochs": 10,
|
21 |
+
"run_eval": true,
|
22 |
+
"run_eval_steps": null,
|
23 |
+
"distributed_backend": "nccl",
|
24 |
+
"distributed_url": "tcp://localhost:54321",
|
25 |
+
"mixed_precision": false,
|
26 |
+
"epochs": 10000,
|
27 |
+
"batch_size": 64,
|
28 |
+
"eval_batch_size": 16,
|
29 |
+
"grad_clip": null,
|
30 |
+
"scheduler_after_epoch": true,
|
31 |
+
"lr": 0.001,
|
32 |
+
"optimizer": "AdamW",
|
33 |
+
"optimizer_params": {
|
34 |
+
"betas": [
|
35 |
+
0.8,
|
36 |
+
0.99
|
37 |
+
],
|
38 |
+
"weight_decay": 0.0
|
39 |
+
},
|
40 |
+
"lr_scheduler": null,
|
41 |
+
"lr_scheduler_params": {},
|
42 |
+
"use_grad_scaler": false,
|
43 |
+
"cudnn_enable": true,
|
44 |
+
"cudnn_deterministic": false,
|
45 |
+
"cudnn_benchmark": true,
|
46 |
+
"training_seed": 54321,
|
47 |
+
"model": "multiband_melgan",
|
48 |
+
"num_loader_workers": 4,
|
49 |
+
"num_eval_loader_workers": 0,
|
50 |
+
"use_noise_augment": false,
|
51 |
+
"audio": {
|
52 |
+
"fft_size": 1024,
|
53 |
+
"win_length": 1024,
|
54 |
+
"hop_length": 256,
|
55 |
+
"frame_shift_ms": null,
|
56 |
+
"frame_length_ms": null,
|
57 |
+
"stft_pad_mode": "reflect",
|
58 |
+
"sample_rate": 22050,
|
59 |
+
"resample": false,
|
60 |
+
"preemphasis": 0.0,
|
61 |
+
"ref_level_db": 0,
|
62 |
+
"do_sound_norm": false,
|
63 |
+
"log_func": "np.log10",
|
64 |
+
"do_trim_silence": true,
|
65 |
+
"trim_db": 60,
|
66 |
+
"do_rms_norm": false,
|
67 |
+
"db_level": null,
|
68 |
+
"power": 1.5,
|
69 |
+
"griffin_lim_iters": 60,
|
70 |
+
"num_mels": 80,
|
71 |
+
"mel_fmin": 50.0,
|
72 |
+
"mel_fmax": 7600.0,
|
73 |
+
"spec_gain": 1,
|
74 |
+
"do_amp_to_db_linear": true,
|
75 |
+
"do_amp_to_db_mel": true,
|
76 |
+
"pitch_fmax": 640.0,
|
77 |
+
"pitch_fmin": 0.0,
|
78 |
+
"signal_norm": true,
|
79 |
+
"min_level_db": -100,
|
80 |
+
"symmetric_norm": true,
|
81 |
+
"max_norm": 4.0,
|
82 |
+
"clip_norm": true,
|
83 |
+
"stats_path": "C:/Users/Torch/AppData/Local\\tts\\vocoder_models--en--ljspeech--multiband-melgan\\scale_stats.npy"
|
84 |
+
},
|
85 |
+
"eval_split_size": 10,
|
86 |
+
"data_path": "/home/erogol/Data/LJSpeech-1.1/wavs/",
|
87 |
+
"feature_path": null,
|
88 |
+
"seq_len": 16384,
|
89 |
+
"pad_short": 2000,
|
90 |
+
"conv_pad": 0,
|
91 |
+
"use_cache": true,
|
92 |
+
"wd": 0.0,
|
93 |
+
"use_stft_loss": true,
|
94 |
+
"use_subband_stft_loss": true,
|
95 |
+
"use_mse_gan_loss": true,
|
96 |
+
"use_hinge_gan_loss": false,
|
97 |
+
"use_feat_match_loss": false,
|
98 |
+
"use_l1_spec_loss": false,
|
99 |
+
"stft_loss_weight": 0.5,
|
100 |
+
"subband_stft_loss_weight": 0.5,
|
101 |
+
"mse_G_loss_weight": 2.5,
|
102 |
+
"hinge_G_loss_weight": 2.5,
|
103 |
+
"feat_match_loss_weight": 25.0,
|
104 |
+
"l1_spec_loss_weight": 0.0,
|
105 |
+
"stft_loss_params": {
|
106 |
+
"n_ffts": [
|
107 |
+
1024,
|
108 |
+
2048,
|
109 |
+
512
|
110 |
+
],
|
111 |
+
"hop_lengths": [
|
112 |
+
120,
|
113 |
+
240,
|
114 |
+
50
|
115 |
+
],
|
116 |
+
"win_lengths": [
|
117 |
+
600,
|
118 |
+
1200,
|
119 |
+
240
|
120 |
+
]
|
121 |
+
},
|
122 |
+
"l1_spec_loss_params": {
|
123 |
+
"use_mel": true,
|
124 |
+
"sample_rate": 22050,
|
125 |
+
"n_fft": 1024,
|
126 |
+
"hop_length": 256,
|
127 |
+
"win_length": 1024,
|
128 |
+
"n_mels": 80,
|
129 |
+
"mel_fmin": 0.0,
|
130 |
+
"mel_fmax": null
|
131 |
+
},
|
132 |
+
"lr_gen": 0.0001,
|
133 |
+
"lr_disc": 0.0001,
|
134 |
+
"lr_scheduler_gen": "MultiStepLR",
|
135 |
+
"lr_scheduler_gen_params": {
|
136 |
+
"gamma": 0.5,
|
137 |
+
"milestones": [
|
138 |
+
100000,
|
139 |
+
200000,
|
140 |
+
300000,
|
141 |
+
400000,
|
142 |
+
500000,
|
143 |
+
600000
|
144 |
+
]
|
145 |
+
},
|
146 |
+
"lr_scheduler_disc": "MultiStepLR",
|
147 |
+
"lr_scheduler_disc_params": {
|
148 |
+
"gamma": 0.5,
|
149 |
+
"milestones": [
|
150 |
+
100000,
|
151 |
+
200000,
|
152 |
+
300000,
|
153 |
+
400000,
|
154 |
+
500000,
|
155 |
+
600000
|
156 |
+
]
|
157 |
+
},
|
158 |
+
"use_pqmf": true,
|
159 |
+
"diff_samples_for_G_and_D": false,
|
160 |
+
"discriminator_model": "melgan_multiscale_discriminator",
|
161 |
+
"discriminator_model_params": {
|
162 |
+
"base_channels": 16,
|
163 |
+
"max_channels": 512,
|
164 |
+
"downsample_factors": [
|
165 |
+
4,
|
166 |
+
4,
|
167 |
+
4
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"generator_model": "multiband_melgan_generator",
|
171 |
+
"generator_model_params": {
|
172 |
+
"upsample_factors": [
|
173 |
+
8,
|
174 |
+
4,
|
175 |
+
2
|
176 |
+
],
|
177 |
+
"num_res_blocks": 4
|
178 |
+
},
|
179 |
+
"steps_to_start_discriminator": true,
|
180 |
+
"subband_stft_loss_params": {
|
181 |
+
"n_ffts": [
|
182 |
+
384,
|
183 |
+
683,
|
184 |
+
171
|
185 |
+
],
|
186 |
+
"hop_lengths": [
|
187 |
+
30,
|
188 |
+
60,
|
189 |
+
10
|
190 |
+
],
|
191 |
+
"win_lengths": [
|
192 |
+
150,
|
193 |
+
300,
|
194 |
+
60
|
195 |
+
]
|
196 |
+
}
|
197 |
+
}
|
tts/vocoder_models--en--ljspeech--multiband-melgan/model_file.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56f16cee42bef70a2d75b08f9b9ea952c9ee0ccf76dd88a91d51e3ca4c11b449
|
3 |
+
size 82831385
|
tts/vocoder_models--en--ljspeech--multiband-melgan/scale_stats.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c4a45b935563157509ddbff09f59e4ffea35e1d07f3bbf87ec21484cb275c4a
|
3 |
+
size 10491
|
tts/vocoder_models--en--ljspeech--univnet/config.json
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"output_path": "/home/ubuntu/TTS/recipes/ljspeech/univnet",
|
3 |
+
"logger_uri": null,
|
4 |
+
"run_name": "",
|
5 |
+
"project_name": null,
|
6 |
+
"run_description": "",
|
7 |
+
"print_step": 25,
|
8 |
+
"plot_step": 100,
|
9 |
+
"model_param_stats": false,
|
10 |
+
"wandb_entity": null,
|
11 |
+
"dashboard_logger": "tensorboard",
|
12 |
+
"log_model_step": null,
|
13 |
+
"save_step": 10000,
|
14 |
+
"save_n_checkpoints": 5,
|
15 |
+
"save_checkpoints": true,
|
16 |
+
"save_all_best": false,
|
17 |
+
"save_best_after": 10000,
|
18 |
+
"target_loss": "loss_0",
|
19 |
+
"print_eval": false,
|
20 |
+
"test_delay_epochs": -1,
|
21 |
+
"run_eval": true,
|
22 |
+
"run_eval_steps": null,
|
23 |
+
"distributed_backend": "nccl",
|
24 |
+
"distributed_url": "tcp://localhost:54321",
|
25 |
+
"mixed_precision": false,
|
26 |
+
"epochs": 1000,
|
27 |
+
"batch_size": 64,
|
28 |
+
"eval_batch_size": 16,
|
29 |
+
"grad_clip": null,
|
30 |
+
"scheduler_after_epoch": false,
|
31 |
+
"lr": 0.001,
|
32 |
+
"optimizer": "AdamW",
|
33 |
+
"optimizer_params": {
|
34 |
+
"betas": [
|
35 |
+
0.5,
|
36 |
+
0.9
|
37 |
+
],
|
38 |
+
"weight_decay": 0.0
|
39 |
+
},
|
40 |
+
"lr_scheduler": null,
|
41 |
+
"lr_scheduler_params": {},
|
42 |
+
"use_grad_scaler": false,
|
43 |
+
"cudnn_enable": true,
|
44 |
+
"cudnn_deterministic": false,
|
45 |
+
"cudnn_benchmark": false,
|
46 |
+
"training_seed": 54321,
|
47 |
+
"model": "univnet",
|
48 |
+
"num_loader_workers": 4,
|
49 |
+
"num_eval_loader_workers": 4,
|
50 |
+
"use_noise_augment": true,
|
51 |
+
"audio": {
|
52 |
+
"fft_size": 1024,
|
53 |
+
"win_length": 1024,
|
54 |
+
"hop_length": 256,
|
55 |
+
"frame_shift_ms": null,
|
56 |
+
"frame_length_ms": null,
|
57 |
+
"stft_pad_mode": "reflect",
|
58 |
+
"sample_rate": 22050,
|
59 |
+
"resample": false,
|
60 |
+
"preemphasis": 0.0,
|
61 |
+
"ref_level_db": 20,
|
62 |
+
"do_sound_norm": false,
|
63 |
+
"log_func": "np.log10",
|
64 |
+
"do_trim_silence": true,
|
65 |
+
"trim_db": 60,
|
66 |
+
"do_rms_norm": false,
|
67 |
+
"db_level": null,
|
68 |
+
"power": 1.5,
|
69 |
+
"griffin_lim_iters": 60,
|
70 |
+
"num_mels": 80,
|
71 |
+
"mel_fmin": 50.0,
|
72 |
+
"mel_fmax": 7600.0,
|
73 |
+
"spec_gain": 1,
|
74 |
+
"do_amp_to_db_linear": true,
|
75 |
+
"do_amp_to_db_mel": true,
|
76 |
+
"pitch_fmax": 640.0,
|
77 |
+
"pitch_fmin": 1.0,
|
78 |
+
"signal_norm": true,
|
79 |
+
"min_level_db": -100,
|
80 |
+
"symmetric_norm": true,
|
81 |
+
"max_norm": 4.0,
|
82 |
+
"clip_norm": true,
|
83 |
+
"stats_path": "C:/Users/Torch/AppData/Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy"
|
84 |
+
},
|
85 |
+
"eval_split_size": 10,
|
86 |
+
"data_path": "/home/ubuntu/TTS/recipes/ljspeech/univnet/../LJSpeech-1.1/wavs/",
|
87 |
+
"feature_path": "/home/ubuntu/TTS/recipes/ljspeech/univnet/../LJSpeech-1.1/specs/mel/",
|
88 |
+
"seq_len": 8192,
|
89 |
+
"pad_short": 2000,
|
90 |
+
"conv_pad": 0,
|
91 |
+
"use_cache": false,
|
92 |
+
"wd": 0.0,
|
93 |
+
"use_stft_loss": true,
|
94 |
+
"use_subband_stft_loss": false,
|
95 |
+
"use_mse_gan_loss": true,
|
96 |
+
"use_hinge_gan_loss": false,
|
97 |
+
"use_feat_match_loss": false,
|
98 |
+
"use_l1_spec_loss": false,
|
99 |
+
"stft_loss_weight": 2.5,
|
100 |
+
"subband_stft_loss_weight": 0.0,
|
101 |
+
"mse_G_loss_weight": 1.0,
|
102 |
+
"hinge_G_loss_weight": 0.0,
|
103 |
+
"feat_match_loss_weight": 0.0,
|
104 |
+
"l1_spec_loss_weight": 0.0,
|
105 |
+
"stft_loss_params": {
|
106 |
+
"n_ffts": [
|
107 |
+
1024,
|
108 |
+
2048,
|
109 |
+
512
|
110 |
+
],
|
111 |
+
"hop_lengths": [
|
112 |
+
120,
|
113 |
+
240,
|
114 |
+
50
|
115 |
+
],
|
116 |
+
"win_lengths": [
|
117 |
+
600,
|
118 |
+
1200,
|
119 |
+
240
|
120 |
+
]
|
121 |
+
},
|
122 |
+
"l1_spec_loss_params": {
|
123 |
+
"use_mel": true,
|
124 |
+
"sample_rate": 22050,
|
125 |
+
"n_fft": 1024,
|
126 |
+
"hop_length": 256,
|
127 |
+
"win_length": 1024,
|
128 |
+
"n_mels": 80,
|
129 |
+
"mel_fmin": 0.0,
|
130 |
+
"mel_fmax": null
|
131 |
+
},
|
132 |
+
"lr_gen": 0.0001,
|
133 |
+
"lr_disc": 0.0001,
|
134 |
+
"lr_scheduler_gen": null,
|
135 |
+
"lr_scheduler_gen_params": {
|
136 |
+
"gamma": 0.999,
|
137 |
+
"last_epoch": -1
|
138 |
+
},
|
139 |
+
"lr_scheduler_disc": null,
|
140 |
+
"lr_scheduler_disc_params": {
|
141 |
+
"gamma": 0.999,
|
142 |
+
"last_epoch": -1
|
143 |
+
},
|
144 |
+
"use_pqmf": false,
|
145 |
+
"diff_samples_for_G_and_D": false,
|
146 |
+
"discriminator_model": "univnet_discriminator",
|
147 |
+
"generator_model": "univnet_generator",
|
148 |
+
"generator_model_params": {
|
149 |
+
"in_channels": 64,
|
150 |
+
"out_channels": 1,
|
151 |
+
"hidden_channels": 32,
|
152 |
+
"cond_channels": 80,
|
153 |
+
"upsample_factors": [
|
154 |
+
8,
|
155 |
+
8,
|
156 |
+
4
|
157 |
+
],
|
158 |
+
"lvc_layers_each_block": 4,
|
159 |
+
"lvc_kernel_size": 3,
|
160 |
+
"kpnet_hidden_channels": 64,
|
161 |
+
"kpnet_conv_size": 3,
|
162 |
+
"dropout": 0.0
|
163 |
+
},
|
164 |
+
"steps_to_start_discriminator": 100000
|
165 |
+
}
|
tts/vocoder_models--en--ljspeech--univnet/model_file.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7350b5a0527507d97fafcf155e25c9b56adee4bfeb5d37d445cb45fdc48f3ca4
|
3 |
+
size 675105017
|
tts/vocoder_models--en--ljspeech--univnet/scale_stats.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e20389c9a2e54ec45baab12a8e4d12b65e1eb24d055b50214db6cd45f779be18
|
3 |
+
size 10700
|
tts/wavlm/WavLM-Large.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fb4b3c3e6aa567f0a997b30855859cb81528ee8078802af439f7b2da0bf100f
|
3 |
+
size 1261965425
|