Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/Coqui.ai-checkpoint.ipynb +381 -0
- Coqui.ai.ipynb +329 -0
- README.md +1 -7
- app.py +160 -0
- examples/arctic_a0023_bdl.wav +0 -0
- examples/arctic_a0023_clb.wav +0 -0
- examples/arctic_a0023_rms.wav +0 -0
- examples/arctic_a0023_slt.wav +0 -0
- examples/arctic_a0366_bdl.wav +0 -0
- examples/arctic_a0366_rms.wav +0 -0
- examples/arctic_a0407_bdl.wav +0 -0
- examples/arctic_a0407_clb.wav +0 -0
- examples/arctic_a0407_rms.wav +0 -0
- examples/arctic_a0407_slt.wav +0 -0
- examples/arctic_b0496_clb.wav +0 -0
- examples/arctic_b0496_slt.wav +0 -0
- examples/henry5.mp3 +0 -0
- examples/hmm_i_dont_know.wav +0 -0
- examples/see_in_eyes.wav +0 -0
- examples/yearn_for_time.mp3 +0 -0
- requirements.txt +18 -0
.ipynb_checkpoints/Coqui.ai-checkpoint.ipynb
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "6065d339",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import torch\n",
|
13 |
+
"import torch.nn.functional as F\n",
|
14 |
+
"from pathlib import Path\n",
|
15 |
+
"\n",
|
16 |
+
"from TTS.api import TTS\n",
|
17 |
+
"from TTS.utils.manage import ModelManager"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 8,
|
23 |
+
"id": "1e64dfd7",
|
24 |
+
"metadata": {
|
25 |
+
"scrolled": false
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"name": "stdout",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
"Running on local URL: http://127.0.0.1:7863\n",
|
33 |
+
"\n",
|
34 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"data": {
|
39 |
+
"text/html": [
|
40 |
+
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
41 |
+
],
|
42 |
+
"text/plain": [
|
43 |
+
"<IPython.core.display.HTML object>"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"metadata": {},
|
47 |
+
"output_type": "display_data"
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"data": {
|
51 |
+
"text/plain": []
|
52 |
+
},
|
53 |
+
"execution_count": 8,
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "execute_result"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"name": "stdout",
|
59 |
+
"output_type": "stream",
|
60 |
+
"text": [
|
61 |
+
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
62 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
63 |
+
" > Model's license - apache 2.0\n",
|
64 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
65 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
66 |
+
" > Model's license - apache 2.0\n",
|
67 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
68 |
+
" > Using model: Tacotron2\n",
|
69 |
+
" > Setting up Audio Processor...\n",
|
70 |
+
" | > sample_rate:22050\n",
|
71 |
+
" | > resample:False\n",
|
72 |
+
" | > num_mels:80\n",
|
73 |
+
" | > log_func:np.log10\n",
|
74 |
+
" | > min_level_db:-100\n",
|
75 |
+
" | > frame_shift_ms:None\n",
|
76 |
+
" | > frame_length_ms:None\n",
|
77 |
+
" | > ref_level_db:20\n",
|
78 |
+
" | > fft_size:1024\n",
|
79 |
+
" | > power:1.5\n",
|
80 |
+
" | > preemphasis:0.0\n",
|
81 |
+
" | > griffin_lim_iters:60\n",
|
82 |
+
" | > signal_norm:True\n",
|
83 |
+
" | > symmetric_norm:True\n",
|
84 |
+
" | > mel_fmin:50.0\n",
|
85 |
+
" | > mel_fmax:7600.0\n",
|
86 |
+
" | > pitch_fmin:0.0\n",
|
87 |
+
" | > pitch_fmax:640.0\n",
|
88 |
+
" | > spec_gain:1.0\n",
|
89 |
+
" | > stft_pad_mode:reflect\n",
|
90 |
+
" | > max_norm:4.0\n",
|
91 |
+
" | > clip_norm:True\n",
|
92 |
+
" | > do_trim_silence:True\n",
|
93 |
+
" | > trim_db:60\n",
|
94 |
+
" | > do_sound_norm:False\n",
|
95 |
+
" | > do_amp_to_db_linear:True\n",
|
96 |
+
" | > do_amp_to_db_mel:True\n",
|
97 |
+
" | > do_rms_norm:False\n",
|
98 |
+
" | > db_level:None\n",
|
99 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
100 |
+
" | > base:10\n",
|
101 |
+
" | > hop_length:256\n",
|
102 |
+
" | > win_length:1024\n",
|
103 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
104 |
+
" > Vocoder Model: univnet\n",
|
105 |
+
" > Setting up Audio Processor...\n",
|
106 |
+
" | > sample_rate:22050\n",
|
107 |
+
" | > resample:False\n",
|
108 |
+
" | > num_mels:80\n",
|
109 |
+
" | > log_func:np.log10\n",
|
110 |
+
" | > min_level_db:-100\n",
|
111 |
+
" | > frame_shift_ms:None\n",
|
112 |
+
" | > frame_length_ms:None\n",
|
113 |
+
" | > ref_level_db:20\n",
|
114 |
+
" | > fft_size:1024\n",
|
115 |
+
" | > power:1.5\n",
|
116 |
+
" | > preemphasis:0.0\n",
|
117 |
+
" | > griffin_lim_iters:60\n",
|
118 |
+
" | > signal_norm:True\n",
|
119 |
+
" | > symmetric_norm:True\n",
|
120 |
+
" | > mel_fmin:50.0\n",
|
121 |
+
" | > mel_fmax:7600.0\n",
|
122 |
+
" | > pitch_fmin:1.0\n",
|
123 |
+
" | > pitch_fmax:640.0\n",
|
124 |
+
" | > spec_gain:1.0\n",
|
125 |
+
" | > stft_pad_mode:reflect\n",
|
126 |
+
" | > max_norm:4.0\n",
|
127 |
+
" | > clip_norm:True\n",
|
128 |
+
" | > do_trim_silence:True\n",
|
129 |
+
" | > trim_db:60\n",
|
130 |
+
" | > do_sound_norm:False\n",
|
131 |
+
" | > do_amp_to_db_linear:True\n",
|
132 |
+
" | > do_amp_to_db_mel:True\n",
|
133 |
+
" | > do_rms_norm:False\n",
|
134 |
+
" | > db_level:None\n",
|
135 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
136 |
+
" | > base:10\n",
|
137 |
+
" | > hop_length:256\n",
|
138 |
+
" | > win_length:1024\n",
|
139 |
+
" > Generator Model: univnet_generator\n",
|
140 |
+
" > Discriminator Model: univnet_discriminator\n",
|
141 |
+
"Passing through TTS model tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
142 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
143 |
+
"language: \n",
|
144 |
+
"speaker: \n",
|
145 |
+
"Using original voice\n",
|
146 |
+
" > Text splitted to sentences.\n",
|
147 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
148 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
149 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
150 |
+
" > Processing time: 3.316999912261963\n",
|
151 |
+
" > Real-time factor: 0.38182763983344614\n",
|
152 |
+
"Loading TTS model from tts_models/en/ek1/tacotron2\n",
|
153 |
+
" > tts_models/en/ek1/tacotron2 is already downloaded.\n",
|
154 |
+
" > Model's license - apache 2.0\n",
|
155 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
156 |
+
" > vocoder_models/en/ek1/wavegrad is already downloaded.\n",
|
157 |
+
" > Model's license - apache 2.0\n",
|
158 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
159 |
+
" > Using model: Tacotron2\n",
|
160 |
+
" > Setting up Audio Processor...\n",
|
161 |
+
" | > sample_rate:22050\n",
|
162 |
+
" | > resample:False\n",
|
163 |
+
" | > num_mels:80\n",
|
164 |
+
" | > log_func:np.log10\n",
|
165 |
+
" | > min_level_db:-10\n",
|
166 |
+
" | > frame_shift_ms:None\n",
|
167 |
+
" | > frame_length_ms:None\n",
|
168 |
+
" | > ref_level_db:0\n",
|
169 |
+
" | > fft_size:1024\n",
|
170 |
+
" | > power:1.8\n",
|
171 |
+
" | > preemphasis:0.99\n",
|
172 |
+
" | > griffin_lim_iters:60\n",
|
173 |
+
" | > signal_norm:True\n",
|
174 |
+
" | > symmetric_norm:True\n",
|
175 |
+
" | > mel_fmin:0\n",
|
176 |
+
" | > mel_fmax:8000.0\n",
|
177 |
+
" | > pitch_fmin:1.0\n",
|
178 |
+
" | > pitch_fmax:640.0\n",
|
179 |
+
" | > spec_gain:1.0\n",
|
180 |
+
" | > stft_pad_mode:reflect\n",
|
181 |
+
" | > max_norm:4.0\n",
|
182 |
+
" | > clip_norm:True\n",
|
183 |
+
" | > do_trim_silence:True\n",
|
184 |
+
" | > trim_db:60\n",
|
185 |
+
" | > do_sound_norm:False\n",
|
186 |
+
" | > do_amp_to_db_linear:True\n",
|
187 |
+
" | > do_amp_to_db_mel:True\n",
|
188 |
+
" | > do_rms_norm:False\n",
|
189 |
+
" | > db_level:None\n",
|
190 |
+
" | > stats_path:None\n",
|
191 |
+
" | > base:10\n",
|
192 |
+
" | > hop_length:256\n",
|
193 |
+
" | > win_length:1024\n",
|
194 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
195 |
+
" > Vocoder Model: wavegrad\n",
|
196 |
+
"Passing through TTS model tts_models/en/ek1/tacotron2\n",
|
197 |
+
"model: tts_models/en/ek1/tacotron2\n",
|
198 |
+
"language: \n",
|
199 |
+
"speaker: \n",
|
200 |
+
"Using original voice\n",
|
201 |
+
" > Text splitted to sentences.\n",
|
202 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n"
|
203 |
+
]
|
204 |
+
}
|
205 |
+
],
|
206 |
+
"source": [
|
207 |
+
"title = \"\"\n",
|
208 |
+
"description = \"\"\"\"\"\"\n",
|
209 |
+
"article = \"\"\"\"\"\"\n",
|
210 |
+
"\n",
|
211 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
212 |
+
"GPU = device == \"cuda\"\n",
|
213 |
+
"INT16MAX = np.iinfo(np.int16).max\n",
|
214 |
+
"\n",
|
215 |
+
"model_ids = ModelManager(verbose=False).list_models()\n",
|
216 |
+
"model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
217 |
+
"model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
218 |
+
"model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
219 |
+
"examples_pt = 'examples'\n",
|
220 |
+
"allowed_extentions = ['.mp3', '.wav']\n",
|
221 |
+
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
222 |
+
"verse = \"\"\"Mary had a little lamb,\n",
|
223 |
+
"Its fleece was white as snow.\n",
|
224 |
+
"Everywhere the child went,\n",
|
225 |
+
"The little lamb was sure to go.\"\"\"\n",
|
226 |
+
"\n",
|
227 |
+
"\n",
|
228 |
+
"\n",
|
229 |
+
"def on_model_tts_select(model_name, tts_var):\n",
|
230 |
+
" if tts_var is None or tts_var.model_name != model_name:\n",
|
231 |
+
" print(f'Loading TTS model from {model_name}')\n",
|
232 |
+
" tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
233 |
+
" else:\n",
|
234 |
+
" print(f'Passing through TTS model {tts_var.model_name}')\n",
|
235 |
+
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
236 |
+
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
237 |
+
" language = languages[0]\n",
|
238 |
+
" speaker = speakers[0]\n",
|
239 |
+
" return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\\\n",
|
240 |
+
" gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)\n",
|
241 |
+
"\n",
|
242 |
+
"\n",
|
243 |
+
"def on_model_vc_select(model_name, vc_var):\n",
|
244 |
+
" if vc_var is None or vc_var.model_name != model_name:\n",
|
245 |
+
" print(f'Loading voice conversion model from {model_name}')\n",
|
246 |
+
" vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
247 |
+
" else:\n",
|
248 |
+
" print(f'Passing through voice conversion model {vc_var.model_name}')\n",
|
249 |
+
" return vc_var\n",
|
250 |
+
"\n",
|
251 |
+
"\n",
|
252 |
+
"def on_voicedropdown(x):\n",
|
253 |
+
" return examples[x]\n",
|
254 |
+
"\n",
|
255 |
+
"\n",
|
256 |
+
"def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):\n",
|
257 |
+
" if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):\n",
|
258 |
+
" return (16000, np.zeros(0).astype(np.int16))\n",
|
259 |
+
" \n",
|
260 |
+
" sample_rate = tts_model.synthesizer.output_sample_rate\n",
|
261 |
+
" if tts_model.is_multi_speaker:\n",
|
262 |
+
" speaker = {s.replace('\\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting\n",
|
263 |
+
" print(f'model: {tts_model.model_name}\\nlanguage: {language}\\nspeaker: {speaker}')\n",
|
264 |
+
" \n",
|
265 |
+
" language = None if language == '' else language\n",
|
266 |
+
" speaker = None if speaker == '' else speaker\n",
|
267 |
+
" if use_original_voice:\n",
|
268 |
+
" print('Using original voice')\n",
|
269 |
+
" speech = tts_model.tts(text, language=language, speaker=speaker) \n",
|
270 |
+
" elif tts_model.synthesizer.tts_model.speaker_manager:\n",
|
271 |
+
" print('voice cloning with the tts')\n",
|
272 |
+
" speech = tts_model.tts(text, language=language, speaker_wav=target_wav)\n",
|
273 |
+
" else:\n",
|
274 |
+
" print('voice cloning with the voice conversion model')\n",
|
275 |
+
" speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)\n",
|
276 |
+
"\n",
|
277 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
278 |
+
" return (sample_rate, speech)\n",
|
279 |
+
"\n",
|
280 |
+
"\n",
|
281 |
+
"def voice_clone(vc_model, source_wav, target_wav):\n",
|
282 |
+
" print(f'model: {vc_model.model_name}\\nsource_wav: {source_wav}\\ntarget_wav: {target_wav}')\n",
|
283 |
+
" sample_rate = vc_model.voice_converter.output_sample_rate\n",
|
284 |
+
" if vc_model is None or source_wav is None or target_wav is None:\n",
|
285 |
+
" return (sample_rate, np.zeros(0).astype(np.int16))\n",
|
286 |
+
"\n",
|
287 |
+
" speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)\n",
|
288 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
289 |
+
" return (sample_rate, speech)\n",
|
290 |
+
"\n",
|
291 |
+
"\n",
|
292 |
+
"with gr.Blocks() as demo:\n",
|
293 |
+
" tts_model = gr.State(None)\n",
|
294 |
+
" vc_model = gr.State(None)\n",
|
295 |
+
" def activate(*args):\n",
|
296 |
+
" return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)\n",
|
297 |
+
" def deactivate(*args):\n",
|
298 |
+
" return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)\n",
|
299 |
+
"\n",
|
300 |
+
" gr.Markdown(description)\n",
|
301 |
+
"\n",
|
302 |
+
" with gr.Row(equal_height=True):\n",
|
303 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
304 |
+
" model_tts_dropdown = gr.Dropdown(model_tts_ids, value=model_tts_ids[3], label='Text-to-speech model', interactive=True)\n",
|
305 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
306 |
+
" language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)\n",
|
307 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
308 |
+
" speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)\n",
|
309 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
310 |
+
" with gr.Row(equal_height=True):\n",
|
311 |
+
"# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)\n",
|
312 |
+
" model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)\n",
|
313 |
+
" \n",
|
314 |
+
" with gr.Accordion(\"Target voice\", open=False) as accordion:\n",
|
315 |
+
" gr.Markdown(\"Upload target voice...\")\n",
|
316 |
+
" with gr.Row(equal_height=True):\n",
|
317 |
+
" voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')\n",
|
318 |
+
" voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)\n",
|
319 |
+
"\n",
|
320 |
+
" with gr.Row(equal_height=True):\n",
|
321 |
+
" with gr.Column(scale=2):\n",
|
322 |
+
" with gr.Row(equal_height=True):\n",
|
323 |
+
" with gr.Column():\n",
|
324 |
+
" text_to_convert = gr.Textbox(verse)\n",
|
325 |
+
" orig_voice = gr.Checkbox(label='Use original voice')\n",
|
326 |
+
" voice_to_convert = gr.Audio(label=\"Upload voice to convert\", source='upload', type='filepath')\n",
|
327 |
+
" with gr.Row(equal_height=True):\n",
|
328 |
+
" button_text = gr.Button('Text to speech', interactive=True)\n",
|
329 |
+
" button_audio = gr.Button('Convert audio', interactive=True)\n",
|
330 |
+
" with gr.Row(equal_height=True):\n",
|
331 |
+
" speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) \n",
|
332 |
+
" \n",
|
333 |
+
" # actions\n",
|
334 |
+
" model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
335 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
336 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
337 |
+
" model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
338 |
+
" then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\\\n",
|
339 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
340 |
+
" voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
341 |
+
" then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\\\n",
|
342 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
343 |
+
" \n",
|
344 |
+
" button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
345 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
346 |
+
" then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], \n",
|
347 |
+
" outputs=speech).\\\n",
|
348 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
349 |
+
"\n",
|
350 |
+
" button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
351 |
+
" then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\\\n",
|
352 |
+
" then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\\\n",
|
353 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
354 |
+
" \n",
|
355 |
+
" gr.HTML(article)\n",
|
356 |
+
"demo.launch(share=False)"
|
357 |
+
]
|
358 |
+
}
|
359 |
+
],
|
360 |
+
"metadata": {
|
361 |
+
"kernelspec": {
|
362 |
+
"display_name": "Python 3",
|
363 |
+
"language": "python",
|
364 |
+
"name": "python3"
|
365 |
+
},
|
366 |
+
"language_info": {
|
367 |
+
"codemirror_mode": {
|
368 |
+
"name": "ipython",
|
369 |
+
"version": 3
|
370 |
+
},
|
371 |
+
"file_extension": ".py",
|
372 |
+
"mimetype": "text/x-python",
|
373 |
+
"name": "python",
|
374 |
+
"nbconvert_exporter": "python",
|
375 |
+
"pygments_lexer": "ipython3",
|
376 |
+
"version": "3.7.9"
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"nbformat": 4,
|
380 |
+
"nbformat_minor": 5
|
381 |
+
}
|
Coqui.ai.ipynb
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "57fc627d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import torch\n",
|
13 |
+
"import torch.nn.functional as F\n",
|
14 |
+
"from pathlib import Path\n",
|
15 |
+
"\n",
|
16 |
+
"from TTS.api import TTS\n",
|
17 |
+
"from TTS.utils.manage import ModelManager"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 9,
|
23 |
+
"id": "a5789dee",
|
24 |
+
"metadata": {
|
25 |
+
"scrolled": false
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"name": "stdout",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
"Running on local URL: http://127.0.0.1:7864\n",
|
33 |
+
"\n",
|
34 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"data": {
|
39 |
+
"text/html": [
|
40 |
+
"<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
41 |
+
],
|
42 |
+
"text/plain": [
|
43 |
+
"<IPython.core.display.HTML object>"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"metadata": {},
|
47 |
+
"output_type": "display_data"
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"data": {
|
51 |
+
"text/plain": []
|
52 |
+
},
|
53 |
+
"execution_count": 9,
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "execute_result"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"name": "stdout",
|
59 |
+
"output_type": "stream",
|
60 |
+
"text": [
|
61 |
+
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
62 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
63 |
+
" > Model's license - apache 2.0\n",
|
64 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
65 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
66 |
+
" > Model's license - apache 2.0\n",
|
67 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
68 |
+
" > Using model: Tacotron2\n",
|
69 |
+
" > Setting up Audio Processor...\n",
|
70 |
+
" | > sample_rate:22050\n",
|
71 |
+
" | > resample:False\n",
|
72 |
+
" | > num_mels:80\n",
|
73 |
+
" | > log_func:np.log10\n",
|
74 |
+
" | > min_level_db:-100\n",
|
75 |
+
" | > frame_shift_ms:None\n",
|
76 |
+
" | > frame_length_ms:None\n",
|
77 |
+
" | > ref_level_db:20\n",
|
78 |
+
" | > fft_size:1024\n",
|
79 |
+
" | > power:1.5\n",
|
80 |
+
" | > preemphasis:0.0\n",
|
81 |
+
" | > griffin_lim_iters:60\n",
|
82 |
+
" | > signal_norm:True\n",
|
83 |
+
" | > symmetric_norm:True\n",
|
84 |
+
" | > mel_fmin:50.0\n",
|
85 |
+
" | > mel_fmax:7600.0\n",
|
86 |
+
" | > pitch_fmin:0.0\n",
|
87 |
+
" | > pitch_fmax:640.0\n",
|
88 |
+
" | > spec_gain:1.0\n",
|
89 |
+
" | > stft_pad_mode:reflect\n",
|
90 |
+
" | > max_norm:4.0\n",
|
91 |
+
" | > clip_norm:True\n",
|
92 |
+
" | > do_trim_silence:True\n",
|
93 |
+
" | > trim_db:60\n",
|
94 |
+
" | > do_sound_norm:False\n",
|
95 |
+
" | > do_amp_to_db_linear:True\n",
|
96 |
+
" | > do_amp_to_db_mel:True\n",
|
97 |
+
" | > do_rms_norm:False\n",
|
98 |
+
" | > db_level:None\n",
|
99 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
100 |
+
" | > base:10\n",
|
101 |
+
" | > hop_length:256\n",
|
102 |
+
" | > win_length:1024\n",
|
103 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
104 |
+
" > Vocoder Model: univnet\n",
|
105 |
+
" > Setting up Audio Processor...\n",
|
106 |
+
" | > sample_rate:22050\n",
|
107 |
+
" | > resample:False\n",
|
108 |
+
" | > num_mels:80\n",
|
109 |
+
" | > log_func:np.log10\n",
|
110 |
+
" | > min_level_db:-100\n",
|
111 |
+
" | > frame_shift_ms:None\n",
|
112 |
+
" | > frame_length_ms:None\n",
|
113 |
+
" | > ref_level_db:20\n",
|
114 |
+
" | > fft_size:1024\n",
|
115 |
+
" | > power:1.5\n",
|
116 |
+
" | > preemphasis:0.0\n",
|
117 |
+
" | > griffin_lim_iters:60\n",
|
118 |
+
" | > signal_norm:True\n",
|
119 |
+
" | > symmetric_norm:True\n",
|
120 |
+
" | > mel_fmin:50.0\n",
|
121 |
+
" | > mel_fmax:7600.0\n",
|
122 |
+
" | > pitch_fmin:1.0\n",
|
123 |
+
" | > pitch_fmax:640.0\n",
|
124 |
+
" | > spec_gain:1.0\n",
|
125 |
+
" | > stft_pad_mode:reflect\n",
|
126 |
+
" | > max_norm:4.0\n",
|
127 |
+
" | > clip_norm:True\n",
|
128 |
+
" | > do_trim_silence:True\n",
|
129 |
+
" | > trim_db:60\n",
|
130 |
+
" | > do_sound_norm:False\n",
|
131 |
+
" | > do_amp_to_db_linear:True\n",
|
132 |
+
" | > do_amp_to_db_mel:True\n",
|
133 |
+
" | > do_rms_norm:False\n",
|
134 |
+
" | > db_level:None\n",
|
135 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
136 |
+
" | > base:10\n",
|
137 |
+
" | > hop_length:256\n",
|
138 |
+
" | > win_length:1024\n",
|
139 |
+
" > Generator Model: univnet_generator\n",
|
140 |
+
" > Discriminator Model: univnet_discriminator\n",
|
141 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
142 |
+
"language: \n",
|
143 |
+
"speaker: \n",
|
144 |
+
"Using original voice\n",
|
145 |
+
" > Text splitted to sentences.\n",
|
146 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
147 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
148 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
149 |
+
" > Processing time: 24.694000244140625\n",
|
150 |
+
" > Real-time factor: 2.8425842872081772\n"
|
151 |
+
]
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"source": [
|
155 |
+
"title = \"\"\n",
|
156 |
+
"description = \"\"\"\"\"\"\n",
|
157 |
+
"article = \"\"\"\"\"\"\n",
|
158 |
+
"\n",
|
159 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
160 |
+
"GPU = device == \"cuda\"\n",
|
161 |
+
"INT16MAX = np.iinfo(np.int16).max\n",
|
162 |
+
"\n",
|
163 |
+
"model_ids = ModelManager(verbose=False).list_models()\n",
|
164 |
+
"model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
165 |
+
"model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
166 |
+
"model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
167 |
+
"examples_pt = 'examples'\n",
|
168 |
+
"allowed_extentions = ['.mp3', '.wav']\n",
|
169 |
+
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
170 |
+
"verse = \"\"\"Mary had a little lamb,\n",
|
171 |
+
"Its fleece was white as snow.\n",
|
172 |
+
"Everywhere the child went,\n",
|
173 |
+
"The little lamb was sure to go.\"\"\"\n",
|
174 |
+
"\n",
|
175 |
+
"\n",
|
176 |
+
"\n",
|
177 |
+
"def on_model_tts_select(model_name, tts_var):\n",
|
178 |
+
" if tts_var is None or tts_var.model_name != model_name:\n",
|
179 |
+
" print(f'Loading TTS model from {model_name}')\n",
|
180 |
+
" tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
181 |
+
" else:\n",
|
182 |
+
" print(f'Passing through TTS model {tts_var.model_name}')\n",
|
183 |
+
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
184 |
+
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
185 |
+
" language = languages[0]\n",
|
186 |
+
" speaker = speakers[0]\n",
|
187 |
+
" return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\\\n",
|
188 |
+
" gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)\n",
|
189 |
+
"\n",
|
190 |
+
"\n",
|
191 |
+
"def on_model_vc_select(model_name, vc_var):\n",
|
192 |
+
" if vc_var is None or vc_var.model_name != model_name:\n",
|
193 |
+
" print(f'Loading voice conversion model from {model_name}')\n",
|
194 |
+
" vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
195 |
+
" else:\n",
|
196 |
+
" print(f'Passing through voice conversion model {vc_var.model_name}')\n",
|
197 |
+
" return vc_var\n",
|
198 |
+
"\n",
|
199 |
+
"\n",
|
200 |
+
"def on_voicedropdown(x):\n",
|
201 |
+
" return examples[x]\n",
|
202 |
+
"\n",
|
203 |
+
"\n",
|
204 |
+
"def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):\n",
|
205 |
+
" if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):\n",
|
206 |
+
" return (16000, np.zeros(0).astype(np.int16))\n",
|
207 |
+
" \n",
|
208 |
+
" sample_rate = tts_model.synthesizer.output_sample_rate\n",
|
209 |
+
" if tts_model.is_multi_speaker:\n",
|
210 |
+
" speaker = {s.replace('\\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting\n",
|
211 |
+
" print(f'model: {tts_model.model_name}\\nlanguage: {language}\\nspeaker: {speaker}')\n",
|
212 |
+
" \n",
|
213 |
+
" language = None if language == '' else language\n",
|
214 |
+
" speaker = None if speaker == '' else speaker\n",
|
215 |
+
" if use_original_voice:\n",
|
216 |
+
" print('Using original voice')\n",
|
217 |
+
" speech = tts_model.tts(text, language=language, speaker=speaker) \n",
|
218 |
+
" elif tts_model.synthesizer.tts_model.speaker_manager:\n",
|
219 |
+
" print('voice cloning with the tts')\n",
|
220 |
+
" speech = tts_model.tts(text, language=language, speaker_wav=target_wav)\n",
|
221 |
+
" else:\n",
|
222 |
+
" print('voice cloning with the voice conversion model')\n",
|
223 |
+
" speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)\n",
|
224 |
+
"\n",
|
225 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
226 |
+
" return (sample_rate, speech)\n",
|
227 |
+
"\n",
|
228 |
+
"\n",
|
229 |
+
"def voice_clone(vc_model, source_wav, target_wav):\n",
|
230 |
+
" print(f'model: {vc_model.model_name}\\nsource_wav: {source_wav}\\ntarget_wav: {target_wav}')\n",
|
231 |
+
" sample_rate = vc_model.voice_converter.output_sample_rate\n",
|
232 |
+
" if vc_model is None or source_wav is None or target_wav is None:\n",
|
233 |
+
" return (sample_rate, np.zeros(0).astype(np.int16))\n",
|
234 |
+
"\n",
|
235 |
+
" speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)\n",
|
236 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
237 |
+
" return (sample_rate, speech)\n",
|
238 |
+
"\n",
|
239 |
+
"\n",
|
240 |
+
"with gr.Blocks() as demo:\n",
|
241 |
+
" tts_model = gr.State(None)\n",
|
242 |
+
" vc_model = gr.State(None)\n",
|
243 |
+
" def activate(*args):\n",
|
244 |
+
" return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)\n",
|
245 |
+
" def deactivate(*args):\n",
|
246 |
+
" return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)\n",
|
247 |
+
"\n",
|
248 |
+
" gr.Markdown(description)\n",
|
249 |
+
"\n",
|
250 |
+
" with gr.Row(equal_height=True):\n",
|
251 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
252 |
+
" model_tts_dropdown = gr.Dropdown(model_tts_ids, value=model_tts_ids[3], label='Text-to-speech model', interactive=True)\n",
|
253 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
254 |
+
" language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)\n",
|
255 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
256 |
+
" speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)\n",
|
257 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
258 |
+
" with gr.Row(equal_height=True):\n",
|
259 |
+
"# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)\n",
|
260 |
+
" model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)\n",
|
261 |
+
" \n",
|
262 |
+
" with gr.Accordion(\"Target voice\", open=False) as accordion:\n",
|
263 |
+
" gr.Markdown(\"Upload target voice...\")\n",
|
264 |
+
" with gr.Row(equal_height=True):\n",
|
265 |
+
" voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')\n",
|
266 |
+
" voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)\n",
|
267 |
+
"\n",
|
268 |
+
" with gr.Row(equal_height=True):\n",
|
269 |
+
" with gr.Column(scale=2):\n",
|
270 |
+
" with gr.Row(equal_height=True):\n",
|
271 |
+
" with gr.Column():\n",
|
272 |
+
" text_to_convert = gr.Textbox(verse)\n",
|
273 |
+
" orig_voice = gr.Checkbox(label='Use original voice')\n",
|
274 |
+
" voice_to_convert = gr.Audio(label=\"Upload voice to convert\", source='upload', type='filepath')\n",
|
275 |
+
" with gr.Row(equal_height=True):\n",
|
276 |
+
" button_text = gr.Button('Text to speech', interactive=True)\n",
|
277 |
+
" button_audio = gr.Button('Convert audio', interactive=True)\n",
|
278 |
+
" with gr.Row(equal_height=True):\n",
|
279 |
+
" speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) \n",
|
280 |
+
" \n",
|
281 |
+
" # actions\n",
|
282 |
+
" model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
283 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
284 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
285 |
+
" model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
286 |
+
" then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\\\n",
|
287 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
288 |
+
" voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
289 |
+
" then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\\\n",
|
290 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
291 |
+
" \n",
|
292 |
+
" button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
293 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
294 |
+
" then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], \n",
|
295 |
+
" outputs=speech).\\\n",
|
296 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
297 |
+
"\n",
|
298 |
+
" button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
299 |
+
" then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\\\n",
|
300 |
+
" then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\\\n",
|
301 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
302 |
+
" \n",
|
303 |
+
" gr.HTML(article)\n",
|
304 |
+
"demo.launch(share=False)"
|
305 |
+
]
|
306 |
+
}
|
307 |
+
],
|
308 |
+
"metadata": {
|
309 |
+
"kernelspec": {
|
310 |
+
"display_name": "Python 3",
|
311 |
+
"language": "python",
|
312 |
+
"name": "python3"
|
313 |
+
},
|
314 |
+
"language_info": {
|
315 |
+
"codemirror_mode": {
|
316 |
+
"name": "ipython",
|
317 |
+
"version": 3
|
318 |
+
},
|
319 |
+
"file_extension": ".py",
|
320 |
+
"mimetype": "text/x-python",
|
321 |
+
"name": "python",
|
322 |
+
"nbconvert_exporter": "python",
|
323 |
+
"pygments_lexer": "ipython3",
|
324 |
+
"version": "3.7.9"
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"nbformat": 4,
|
328 |
+
"nbformat_minor": 5
|
329 |
+
}
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
title: Coqui.ai
|
3 |
-
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.33.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Coqui.ai
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 3.33.1
|
|
|
|
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from TTS.api import TTS
|
8 |
+
from TTS.utils.manage import ModelManager
|
9 |
+
|
10 |
+
|
11 |
+
title = ""
|
12 |
+
description = """"""
|
13 |
+
article = """"""
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
GPU = device == "cuda"
|
17 |
+
INT16MAX = np.iinfo(np.int16).max
|
18 |
+
|
19 |
+
model_ids = ModelManager(verbose=False).list_models()
|
20 |
+
model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
21 |
+
model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
|
22 |
+
model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
23 |
+
examples_pt = 'examples'
|
24 |
+
allowed_extentions = ['.mp3', '.wav']
|
25 |
+
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
|
26 |
+
verse = """Mary had a little lamb,
|
27 |
+
Its fleece was white as snow.
|
28 |
+
Everywhere the child went,
|
29 |
+
The little lamb was sure to go."""
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def on_model_tts_select(model_name, tts_var):
|
34 |
+
if tts_var is None or tts_var.model_name != model_name:
|
35 |
+
print(f'Loading TTS model from {model_name}')
|
36 |
+
tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
37 |
+
else:
|
38 |
+
print(f'Passing through TTS model {tts_var.model_name}')
|
39 |
+
languages = tts_var.languages if tts_var.is_multi_lingual else ['']
|
40 |
+
speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
|
41 |
+
language = languages[0]
|
42 |
+
speaker = speakers[0]
|
43 |
+
return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\
|
44 |
+
gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)
|
45 |
+
|
46 |
+
|
47 |
+
def on_model_vc_select(model_name, vc_var):
|
48 |
+
if vc_var is None or vc_var.model_name != model_name:
|
49 |
+
print(f'Loading voice conversion model from {model_name}')
|
50 |
+
vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
51 |
+
else:
|
52 |
+
print(f'Passing through voice conversion model {vc_var.model_name}')
|
53 |
+
return vc_var
|
54 |
+
|
55 |
+
|
56 |
+
def on_voicedropdown(x):
|
57 |
+
return examples[x]
|
58 |
+
|
59 |
+
|
60 |
+
def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
|
61 |
+
if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
|
62 |
+
return (16000, np.zeros(0).astype(np.int16))
|
63 |
+
|
64 |
+
sample_rate = tts_model.synthesizer.output_sample_rate
|
65 |
+
if tts_model.is_multi_speaker:
|
66 |
+
speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
|
67 |
+
print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')
|
68 |
+
|
69 |
+
language = None if language == '' else language
|
70 |
+
speaker = None if speaker == '' else speaker
|
71 |
+
if use_original_voice:
|
72 |
+
print('Using original voice')
|
73 |
+
speech = tts_model.tts(text, language=language, speaker=speaker)
|
74 |
+
elif tts_model.synthesizer.tts_model.speaker_manager:
|
75 |
+
print('voice cloning with the tts')
|
76 |
+
speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
|
77 |
+
else:
|
78 |
+
print('voice cloning with the voice conversion model')
|
79 |
+
speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)
|
80 |
+
|
81 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
82 |
+
return (sample_rate, speech)
|
83 |
+
|
84 |
+
|
85 |
+
def voice_clone(vc_model, source_wav, target_wav):
|
86 |
+
print(f'model: {vc_model.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
|
87 |
+
sample_rate = vc_model.voice_converter.output_sample_rate
|
88 |
+
if vc_model is None or source_wav is None or target_wav is None:
|
89 |
+
return (sample_rate, np.zeros(0).astype(np.int16))
|
90 |
+
|
91 |
+
speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)
|
92 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
93 |
+
return (sample_rate, speech)
|
94 |
+
|
95 |
+
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
tts_model = gr.State(None)
|
98 |
+
vc_model = gr.State(None)
|
99 |
+
def activate(*args):
|
100 |
+
return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
|
101 |
+
def deactivate(*args):
|
102 |
+
return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)
|
103 |
+
|
104 |
+
gr.Markdown(description)
|
105 |
+
|
106 |
+
with gr.Row(equal_height=True):
|
107 |
+
with gr.Column(scale=5, min_width=50):
|
108 |
+
model_tts_dropdown = gr.Dropdown(model_tts_ids, value=model_tts_ids[3], label='Text-to-speech model', interactive=True)
|
109 |
+
with gr.Column(scale=1, min_width=10):
|
110 |
+
language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
|
111 |
+
with gr.Column(scale=1, min_width=10):
|
112 |
+
speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
|
113 |
+
with gr.Column(scale=5, min_width=50):
|
114 |
+
with gr.Row(equal_height=True):
|
115 |
+
# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)
|
116 |
+
model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)
|
117 |
+
|
118 |
+
with gr.Accordion("Target voice", open=False) as accordion:
|
119 |
+
gr.Markdown("Upload target voice...")
|
120 |
+
with gr.Row(equal_height=True):
|
121 |
+
voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')
|
122 |
+
voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)
|
123 |
+
|
124 |
+
with gr.Row(equal_height=True):
|
125 |
+
with gr.Column(scale=2):
|
126 |
+
with gr.Row(equal_height=True):
|
127 |
+
with gr.Column():
|
128 |
+
text_to_convert = gr.Textbox(verse)
|
129 |
+
orig_voice = gr.Checkbox(label='Use original voice')
|
130 |
+
voice_to_convert = gr.Audio(label="Upload voice to convert", source='upload', type='filepath')
|
131 |
+
with gr.Row(equal_height=True):
|
132 |
+
button_text = gr.Button('Text to speech', interactive=True)
|
133 |
+
button_audio = gr.Button('Convert audio', interactive=True)
|
134 |
+
with gr.Row(equal_height=True):
|
135 |
+
speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False)
|
136 |
+
|
137 |
+
# actions
|
138 |
+
model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
139 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
140 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
141 |
+
model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
142 |
+
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
143 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
144 |
+
voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
145 |
+
then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
|
146 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
147 |
+
|
148 |
+
button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
149 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
150 |
+
then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice],
|
151 |
+
outputs=speech).\
|
152 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
153 |
+
|
154 |
+
button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
155 |
+
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
156 |
+
then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\
|
157 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
158 |
+
|
159 |
+
gr.HTML(article)
|
160 |
+
demo.launch(share=False)
|
examples/arctic_a0023_bdl.wav
ADDED
Binary file (168 kB). View file
|
|
examples/arctic_a0023_clb.wav
ADDED
Binary file (189 kB). View file
|
|
examples/arctic_a0023_rms.wav
ADDED
Binary file (172 kB). View file
|
|
examples/arctic_a0023_slt.wav
ADDED
Binary file (153 kB). View file
|
|
examples/arctic_a0366_bdl.wav
ADDED
Binary file (166 kB). View file
|
|
examples/arctic_a0366_rms.wav
ADDED
Binary file (184 kB). View file
|
|
examples/arctic_a0407_bdl.wav
ADDED
Binary file (183 kB). View file
|
|
examples/arctic_a0407_clb.wav
ADDED
Binary file (200 kB). View file
|
|
examples/arctic_a0407_rms.wav
ADDED
Binary file (216 kB). View file
|
|
examples/arctic_a0407_slt.wav
ADDED
Binary file (171 kB). View file
|
|
examples/arctic_b0496_clb.wav
ADDED
Binary file (192 kB). View file
|
|
examples/arctic_b0496_slt.wav
ADDED
Binary file (171 kB). View file
|
|
examples/henry5.mp3
ADDED
Binary file (375 kB). View file
|
|
examples/hmm_i_dont_know.wav
ADDED
Binary file (203 kB). View file
|
|
examples/see_in_eyes.wav
ADDED
Binary file (65.2 kB). View file
|
|
examples/yearn_for_time.mp3
ADDED
Binary file (56.3 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TTS
|
2 |
+
numpy==1.21.6;python_version<"3.10"
|
3 |
+
numpy;python_version=="3.10"
|
4 |
+
cython==0.29.28
|
5 |
+
scipy>=1.4.0
|
6 |
+
torch>=1.7
|
7 |
+
torchaudio
|
8 |
+
soundfile
|
9 |
+
librosa==0.10.0.*
|
10 |
+
numba==0.55.1;python_version<"3.9"
|
11 |
+
numba==0.56.4;python_version>="3.9"
|
12 |
+
inflect==5.6.0
|
13 |
+
tqdm
|
14 |
+
anyascii
|
15 |
+
pyyaml
|
16 |
+
fsspec>=2021.04.0
|
17 |
+
aiohttp
|
18 |
+
packaging
|