Spaces:
Runtime error
Runtime error
File size: 9,770 Bytes
383af88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import json
import os
from typing import Optional
import tensorrt_llm
import tensorrt_llm.profiler as profiler
import torch
from PIL import Image
from pydantic import BaseModel, Field
from tensorrt_llm import logger
from tensorrt_llm import mpi_rank
from tensorrt_llm.runtime import MultimodalModelRunner
from transformers import AutoTokenizer, DonutProcessor
class InferenceConfig(BaseModel):
max_new_tokens: int = Field(128, description="Maximum new tokens to generate")
batch_size: int = Field(1, description="Batch size for inference")
log_level: str = Field("info", description="Logging level")
visual_engine_dir: Optional[str] = Field(None, description="Directory for visual engine files")
visual_engine_name: str = Field("model.engine", description="Visual engine filename")
llm_engine_dir: Optional[str] = Field(None, description="Directory for LLM engine files")
hf_model_dir: Optional[str] = Field(None, description="Hugging Face model directory")
input_text: Optional[str] = Field(None, description="Input text for inference")
num_beams: int = Field(1, description="Number of beams for beam search")
top_k: int = Field(1, description="Top-k sampling value")
top_p: float = Field(0.0, description="Top-p (nucleus) sampling value")
temperature: float = Field(1.0, description="Sampling temperature")
repetition_penalty: float = Field(1.0, description="Repetition penalty factor")
run_profiling: bool = Field(False, description="Enable profiling mode")
profiling_iterations: int = Field(20, description="Number of profiling iterations")
check_accuracy: bool = Field(False, description="Enable accuracy checking")
video_path: Optional[str] = Field(None, description="Path to input video file")
video_num_frames: Optional[int] = Field(None, description="Number of video frames to process")
image_path: Optional[str] = Field(None, description="Path to input image file")
path_sep: str = Field(",", description="Path separator character")
prompt_sep: str = Field(",", description="Prompt separator character")
enable_context_fmha_fp32_acc: Optional[bool] = Field(
None,
description="Enable FP32 accumulation for context FMHA"
)
enable_chunked_context: bool = Field(False, description="Enable chunked context processing")
use_py_session: bool = Field(False, description="Use Python session instead of C++")
kv_cache_free_gpu_memory_fraction: float = Field(
0.9,
description="Fraction of GPU memory free for KV cache",
ge=0.0, le=1.0
)
cross_kv_cache_fraction: float = Field(
0.5,
description="Fraction of cross-attention KV cache",
ge=0.0, le=1.0
)
multi_block_mode: bool = Field(True, description="Enable multi-block processing mode")
class DolphinRunner(MultimodalModelRunner):
def __init__(self, args):
self.args = args
self.runtime_rank = mpi_rank()
device_id = self.runtime_rank % torch.cuda.device_count()
torch.cuda.set_device(device_id)
self.device = "cuda:%d" % (device_id)
self.stream = torch.cuda.Stream(torch.cuda.current_device())
torch.cuda.set_stream(self.stream)
# parse model type from visual engine config
with open(os.path.join(self.args.visual_engine_dir, "config.json"),
"r") as f:
config = json.load(f)
self.model_type = config['builder_config']['model_type']
self.vision_precision = config['builder_config']['precision']
self.decoder_llm = not (
't5' in self.model_type
or self.model_type in ['nougat', 'pix2struct']
) # BLIP2-T5, pix2struct and Nougat are using encoder-decoder models as LLMs
if self.model_type == "mllama":
self.vision_input_names = [
"pixel_values",
"aspect_ratio_ids",
"aspect_ratio_mask",
]
self.vision_output_names = [
"output",
]
else:
self.vision_input_names = ["input"]
self.vision_output_names = ["output"]
self.use_py_session = True
self.init_image_encoder()
self.init_tokenizer()
self.init_processor()
self.init_llm()
def init_tokenizer(self):
assert self.model_type == 'nougat'
self.tokenizer = AutoTokenizer.from_pretrained(self.args.hf_model_dir)
self.tokenizer.padding_side = "right"
def init_processor(self):
assert self.model_type == 'nougat'
self.processor = DonutProcessor.from_pretrained(self.args.hf_model_dir, use_fast=True)
def run(self, input_texts, input_images, max_new_tokens):
prompts = [f"<s>{text.strip()} <Answer/>" for text in input_texts]
images = self.processor(input_images, return_tensors="pt")['pixel_values'].to("cuda")
prompt_ids = self.tokenizer(prompts, add_special_tokens=False, return_tensors="pt").input_ids.to("cuda")
# π¨π¨π¨ Important! If the type of prompt_ids is not int32, the output will be wrong. π¨π¨π¨
prompt_ids = prompt_ids.to(torch.int32)
logger.info("---------------------------------------------------------")
logger.info(f"images size: {images.size()}")
logger.info(f"prompt_ids: {prompt_ids}, size: {prompt_ids.size()}, dtype: {prompt_ids.dtype}")
logger.info("---------------------------------------------------------")
output_texts = self.generate(input_texts,
[None] * len(input_texts),
images,
prompt_ids,
max_new_tokens,
warmup=False,
)
return output_texts
def generate(self,
pre_prompt,
post_prompt,
image,
decoder_input_ids,
max_new_tokens,
warmup=False,
other_vision_inputs={},
other_decoder_inputs={}):
if not warmup:
profiler.start("Generate")
input_ids, input_lengths, ptuning_args, visual_features = self.preprocess(
warmup, pre_prompt, post_prompt, image, other_vision_inputs)
if warmup: return None
# use prompt tuning to pass multimodal features
# model.generate() expects the following params (see layers/embedding.py):
# args[0]: prompt embedding table, [batch_size, multimodal_len, hidden_size], later flattened to [batch_size * multimodal_len, hidden_size]
# args[1]: prompt task ids, [batch_size]. in multimodal case, arange(batch_size), i.e. in VILA batching mode 2, each image is treated separately in the batch instead of concated together (although the prompt embedding table has to be concated)
# args[2]: prompt task vocab size, [1]. assuming all table has the same length, which in multimodal case equals to multimodal_len
profiler.start("LLM")
if self.model_type in ['nougat', 'pix2struct']:
# Trim encoder input_ids to match visual features shape
ids_shape = (min(self.args.batch_size, len(pre_prompt)), visual_features.shape[1])
if self.model_type == 'nougat':
input_ids = torch.zeros(ids_shape, dtype=torch.int32)
elif self.model_type == 'pix2struct':
input_ids = torch.ones(ids_shape, dtype=torch.int32)
output_ids = self.model.generate(
input_ids,
decoder_input_ids,
max_new_tokens,
num_beams=self.args.num_beams,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
debug_mode=False,
prompt_embedding_table=ptuning_args[0],
prompt_tasks=ptuning_args[1],
prompt_vocab_size=ptuning_args[2],
)
profiler.stop("LLM")
if mpi_rank() == 0:
# Extract a list of tensors of shape beam_width x output_ids.
output_beams_list = [
self.tokenizer.batch_decode(
output_ids[batch_idx, :, decoder_input_ids.shape[1]:],
skip_special_tokens=False) for batch_idx in range(
min(self.args.batch_size, decoder_input_ids.shape[0]))
]
stripped_text = [[
output_beams_list[batch_idx][beam_idx].replace("</s>", "").replace("<pad>", "").strip()
for beam_idx in range(self.args.num_beams)
] for batch_idx in range(
min(self.args.batch_size, decoder_input_ids.shape[0]))]
profiler.stop("Generate")
return stripped_text
else:
profiler.stop("Generate")
return None
if __name__ == "__main__":
config = InferenceConfig(
max_new_tokens=4024,
batch_size=16,
log_level="info",
hf_model_dir=f"./tmp/hf_models/Dolphin",
visual_engine_dir=f"./tmp/trt_engines/Dolphin/vision_encoder",
llm_engine_dir=f"./tmp/trt_engines/Dolphin/1-gpu/bfloat16",
)
model = DolphinRunner(config)
image_path = "../../demo/page_imgs/page_1.jpeg"
prompt = "Parse the reading order of this document."
image = Image.open(image_path).convert("RGB")
output_texts = model.run([prompt], [image], 4024)
output_texts = [texts[0] for texts in output_texts]
print(output_texts)
|