File size: 9,770 Bytes
383af88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""

import json
import os
from typing import Optional

import tensorrt_llm
import tensorrt_llm.profiler as profiler
import torch
from PIL import Image
from pydantic import BaseModel, Field
from tensorrt_llm import logger
from tensorrt_llm import mpi_rank
from tensorrt_llm.runtime import MultimodalModelRunner
from transformers import AutoTokenizer, DonutProcessor


class InferenceConfig(BaseModel):
    max_new_tokens: int = Field(128, description="Maximum new tokens to generate")
    batch_size: int = Field(1, description="Batch size for inference")
    log_level: str = Field("info", description="Logging level")
    visual_engine_dir: Optional[str] = Field(None, description="Directory for visual engine files")
    visual_engine_name: str = Field("model.engine", description="Visual engine filename")
    llm_engine_dir: Optional[str] = Field(None, description="Directory for LLM engine files")
    hf_model_dir: Optional[str] = Field(None, description="Hugging Face model directory")
    input_text: Optional[str] = Field(None, description="Input text for inference")
    num_beams: int = Field(1, description="Number of beams for beam search")
    top_k: int = Field(1, description="Top-k sampling value")
    top_p: float = Field(0.0, description="Top-p (nucleus) sampling value")
    temperature: float = Field(1.0, description="Sampling temperature")
    repetition_penalty: float = Field(1.0, description="Repetition penalty factor")
    run_profiling: bool = Field(False, description="Enable profiling mode")
    profiling_iterations: int = Field(20, description="Number of profiling iterations")
    check_accuracy: bool = Field(False, description="Enable accuracy checking")
    video_path: Optional[str] = Field(None, description="Path to input video file")
    video_num_frames: Optional[int] = Field(None, description="Number of video frames to process")
    image_path: Optional[str] = Field(None, description="Path to input image file")
    path_sep: str = Field(",", description="Path separator character")
    prompt_sep: str = Field(",", description="Prompt separator character")
    enable_context_fmha_fp32_acc: Optional[bool] = Field(
        None,
        description="Enable FP32 accumulation for context FMHA"
    )
    enable_chunked_context: bool = Field(False, description="Enable chunked context processing")
    use_py_session: bool = Field(False, description="Use Python session instead of C++")
    kv_cache_free_gpu_memory_fraction: float = Field(
        0.9,
        description="Fraction of GPU memory free for KV cache",
        ge=0.0, le=1.0
    )
    cross_kv_cache_fraction: float = Field(
        0.5,
        description="Fraction of cross-attention KV cache",
        ge=0.0, le=1.0
    )
    multi_block_mode: bool = Field(True, description="Enable multi-block processing mode")


class DolphinRunner(MultimodalModelRunner):
    def __init__(self, args):
        self.args = args

        self.runtime_rank = mpi_rank()
        device_id = self.runtime_rank % torch.cuda.device_count()
        torch.cuda.set_device(device_id)
        self.device = "cuda:%d" % (device_id)

        self.stream = torch.cuda.Stream(torch.cuda.current_device())
        torch.cuda.set_stream(self.stream)

        # parse model type from visual engine config
        with open(os.path.join(self.args.visual_engine_dir, "config.json"),
                  "r") as f:
            config = json.load(f)
        self.model_type = config['builder_config']['model_type']
        self.vision_precision = config['builder_config']['precision']
        self.decoder_llm = not (
                't5' in self.model_type
                or self.model_type in ['nougat', 'pix2struct']
        )  # BLIP2-T5, pix2struct and Nougat are using encoder-decoder models as LLMs

        if self.model_type == "mllama":
            self.vision_input_names = [
                "pixel_values",
                "aspect_ratio_ids",
                "aspect_ratio_mask",
            ]
            self.vision_output_names = [
                "output",
            ]
        else:
            self.vision_input_names = ["input"]
            self.vision_output_names = ["output"]

        self.use_py_session = True

        self.init_image_encoder()
        self.init_tokenizer()
        self.init_processor()
        self.init_llm()

    def init_tokenizer(self):
        assert self.model_type == 'nougat'
        self.tokenizer = AutoTokenizer.from_pretrained(self.args.hf_model_dir)
        self.tokenizer.padding_side = "right"

    def init_processor(self):
        assert self.model_type == 'nougat'
        self.processor = DonutProcessor.from_pretrained(self.args.hf_model_dir, use_fast=True)

    def run(self, input_texts, input_images, max_new_tokens):
        prompts = [f"<s>{text.strip()} <Answer/>" for text in input_texts]
        images = self.processor(input_images, return_tensors="pt")['pixel_values'].to("cuda")
        prompt_ids = self.tokenizer(prompts, add_special_tokens=False, return_tensors="pt").input_ids.to("cuda")

        # 🚨🚨🚨 Important! If the type of prompt_ids is not int32, the output will be wrong. 🚨🚨🚨
        prompt_ids = prompt_ids.to(torch.int32)

        logger.info("---------------------------------------------------------")
        logger.info(f"images size: {images.size()}")
        logger.info(f"prompt_ids: {prompt_ids}, size: {prompt_ids.size()}, dtype: {prompt_ids.dtype}")
        logger.info("---------------------------------------------------------")

        output_texts = self.generate(input_texts,
                                     [None] * len(input_texts),
                                     images,
                                     prompt_ids,
                                     max_new_tokens,
                                     warmup=False,
                                     )

        return output_texts

    def generate(self,
                 pre_prompt,
                 post_prompt,
                 image,
                 decoder_input_ids,
                 max_new_tokens,
                 warmup=False,
                 other_vision_inputs={},
                 other_decoder_inputs={}):
        if not warmup:
            profiler.start("Generate")
        input_ids, input_lengths, ptuning_args, visual_features = self.preprocess(
            warmup, pre_prompt, post_prompt, image, other_vision_inputs)

        if warmup: return None

        # use prompt tuning to pass multimodal features
        # model.generate() expects the following params (see layers/embedding.py):
        # args[0]: prompt embedding table, [batch_size, multimodal_len, hidden_size], later flattened to [batch_size * multimodal_len, hidden_size]
        # args[1]: prompt task ids, [batch_size]. in multimodal case, arange(batch_size), i.e. in VILA batching mode 2, each image is treated separately in the batch instead of concated together (although the prompt embedding table has to be concated)
        # args[2]: prompt task vocab size, [1]. assuming all table has the same length, which in multimodal case equals to multimodal_len
        profiler.start("LLM")
        if self.model_type in ['nougat', 'pix2struct']:
            # Trim encoder input_ids to match visual features shape
            ids_shape = (min(self.args.batch_size, len(pre_prompt)), visual_features.shape[1])
            if self.model_type == 'nougat':
                input_ids = torch.zeros(ids_shape, dtype=torch.int32)
            elif self.model_type == 'pix2struct':
                input_ids = torch.ones(ids_shape, dtype=torch.int32)

        output_ids = self.model.generate(
            input_ids,
            decoder_input_ids,
            max_new_tokens,
            num_beams=self.args.num_beams,
            bos_token_id=self.tokenizer.bos_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            debug_mode=False,
            prompt_embedding_table=ptuning_args[0],
            prompt_tasks=ptuning_args[1],
            prompt_vocab_size=ptuning_args[2],
        )
        profiler.stop("LLM")

        if mpi_rank() == 0:
            # Extract a list of tensors of shape beam_width x output_ids.
            output_beams_list = [
                self.tokenizer.batch_decode(
                    output_ids[batch_idx, :, decoder_input_ids.shape[1]:],
                    skip_special_tokens=False) for batch_idx in range(
                    min(self.args.batch_size, decoder_input_ids.shape[0]))
            ]

            stripped_text = [[
                output_beams_list[batch_idx][beam_idx].replace("</s>", "").replace("<pad>", "").strip()
                for beam_idx in range(self.args.num_beams)
            ] for batch_idx in range(
                min(self.args.batch_size, decoder_input_ids.shape[0]))]
            profiler.stop("Generate")
            return stripped_text
        else:
            profiler.stop("Generate")
            return None


if __name__ == "__main__":
    config = InferenceConfig(
        max_new_tokens=4024,
        batch_size=16,
        log_level="info",
        hf_model_dir=f"./tmp/hf_models/Dolphin",
        visual_engine_dir=f"./tmp/trt_engines/Dolphin/vision_encoder",
        llm_engine_dir=f"./tmp/trt_engines/Dolphin/1-gpu/bfloat16",
    )

    model = DolphinRunner(config)

    image_path = "../../demo/page_imgs/page_1.jpeg"
    prompt = "Parse the reading order of this document."
    image = Image.open(image_path).convert("RGB")
    output_texts = model.run([prompt], [image], 4024)
    output_texts = [texts[0] for texts in output_texts]
    print(output_texts)