Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
SPDX-License-Identifier: MIT | |
""" | |
import argparse | |
import os | |
import tensorrt_llm | |
import tensorrt_llm.profiler as profiler | |
from PIL import Image | |
from tensorrt_llm import logger | |
from tensorrt_llm import mpi_rank | |
from tensorrt_llm.runtime import MultimodalModelRunner | |
from dolphin_runner import DolphinRunner | |
from utils import add_common_args | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
def print_result(model, input_text, output_text, args): | |
logger.info("---------------------------------------------------------") | |
logger.info(f"\n[Q] {input_text}") | |
for i in range(len(output_text)): | |
logger.info(f"\n[A]: {output_text[i]}") | |
if args.num_beams == 1: | |
output_ids = model.tokenizer(output_text[0][0], | |
add_special_tokens=False)['input_ids'] | |
logger.info(f"Generated {len(output_ids)} tokens") | |
if args.check_accuracy: | |
if model.model_type != 'nougat': | |
if model.model_type == "vila": | |
for i in range(len(args.image_path.split(args.path_sep))): | |
if i % 2 == 0: | |
assert output_text[i][0].lower( | |
) == "the image captures a bustling city intersection teeming with life. from the perspective of a car's dashboard camera, we see" | |
else: | |
assert output_text[i][0].lower( | |
) == "the image captures the iconic merlion statue in singapore, a renowned worldwide landmark. the merlion, a mythical" | |
elif model.model_type == "llava": | |
for i in range(len(args.image_path.split(args.path_sep))): | |
assert output_text[i][0].lower() == 'singapore' | |
elif model.model_type == 'fuyu': | |
assert output_text[0][0].lower() == '4' | |
elif model.model_type == "pix2struct": | |
assert "characteristic | cat food, day | cat food, wet | cat treats" in output_text[ | |
0][0].lower() | |
elif model.model_type in [ | |
'blip2', 'neva', 'phi-3-vision', 'llava_next' | |
]: | |
assert 'singapore' in output_text[0][0].lower() | |
elif model.model_type == 'video-neva': | |
assert 'robot' in output_text[0][0].lower() | |
elif model.model_type == 'kosmos-2': | |
assert 'snowman' in output_text[0][0].lower() | |
elif model.model_type == "mllama": | |
if "If I had to write a haiku for this one" in input_text: | |
assert "it would be:.\\nPeter Rabbit is a rabbit.\\nHe lives in a" in output_text[ | |
0][0] or "Here is a haiku for the image:\n\n" in output_text[ | |
0][0], f"expected results: 'it would be:.\\nPeter Rabbit is a rabbit.\\nHe lives in a', generated results: '{output_text[0][0]}'" | |
elif "The key to life is" in input_text: | |
assert "to find your passion and pursue it with all your heart." in output_text[ | |
0][0] or "not to be found in the external world," in output_text[ | |
0][0], f"expected results: 'to find your passion and pursue it with all your heart.', generated results: '{output_text[0][0]}'" | |
elif model.model_type == 'llava_onevision': | |
if args.video_path is None: | |
assert 'singapore' in output_text[0][0].lower() | |
else: | |
assert 'the video is funny because the child\'s actions are' in output_text[ | |
0][0].lower() | |
elif model.model_type == "qwen2_vl": | |
assert 'dog' in output_text[0][0].lower() | |
else: | |
assert output_text[0][0].lower() == 'singapore' | |
if args.run_profiling: | |
msec_per_batch = lambda name: 1000 * profiler.elapsed_time_in_sec( | |
name) / args.profiling_iterations | |
logger.info('Latencies per batch (msec)') | |
logger.info('TRT vision encoder: %.1f' % (msec_per_batch('Vision'))) | |
logger.info('TRTLLM LLM generate: %.1f' % (msec_per_batch('LLM'))) | |
logger.info('Multimodal generate: %.1f' % (msec_per_batch('Generate'))) | |
logger.info("---------------------------------------------------------") | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser = add_common_args(parser) | |
args = parser.parse_args() | |
logger.set_level(args.log_level) | |
model = DolphinRunner(args) | |
input_image = Image.open(args.image_path[0]).convert('RGB') | |
num_iters = args.profiling_iterations if args.run_profiling else 1 | |
for _ in range(num_iters): | |
output_texts = model.run(args.input_text, [input_image], args.max_new_tokens) | |
runtime_rank = tensorrt_llm.mpi_rank() | |
if runtime_rank == 0: | |
print_result(model, args.input_text, output_texts, args) | |