Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,10 +15,11 @@ try:
|
|
15 |
from sentence_transformers import SentenceTransformer
|
16 |
import numpy as np
|
17 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
18 |
RAG_DEPENDENCIES_AVAILABLE = True
|
19 |
except ImportError as e:
|
20 |
print(f"RAG dependencies not available: {e}")
|
21 |
-
print("Please install: pip install sentence-transformers scikit-learn")
|
22 |
RAG_DEPENDENCIES_AVAILABLE = False
|
23 |
SentenceTransformer = None
|
24 |
import os
|
@@ -320,21 +321,32 @@ hf_token = os.getenv('HF_TOKEN')
|
|
320 |
# Don't load models initially - load them on demand
|
321 |
model_status = "β
Models ready (Dynamic loading)"
|
322 |
|
323 |
-
# Initialize embedding model
|
324 |
if RAG_DEPENDENCIES_AVAILABLE:
|
325 |
try:
|
326 |
print("Loading embedding model for RAG...")
|
327 |
-
# Use CPU for embedding model to save GPU memory for main models
|
328 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
|
329 |
print("β
Embedding model loaded successfully (CPU)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
except Exception as e:
|
331 |
-
print(f"β Error loading
|
332 |
import traceback
|
333 |
traceback.print_exc()
|
334 |
embedding_model = None
|
|
|
335 |
else:
|
336 |
print("β RAG dependencies not available")
|
337 |
embedding_model = None
|
|
|
338 |
|
339 |
# Model management functions
|
340 |
def load_dolphin_model():
|
@@ -371,59 +383,29 @@ def unload_dolphin_model():
|
|
371 |
torch.cuda.empty_cache()
|
372 |
print("β
DOLPHIN model unloaded")
|
373 |
|
374 |
-
def
|
375 |
-
"""
|
376 |
-
global
|
377 |
-
|
378 |
-
if current_model == "chatbot":
|
379 |
-
return chatbot_model, chatbot_processor
|
380 |
|
381 |
-
|
382 |
-
|
383 |
|
384 |
try:
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
chatbot_processor = AutoProcessor.from_pretrained(
|
397 |
-
"google/gemma-3n-e4b-it",
|
398 |
-
token=hf_token
|
399 |
-
)
|
400 |
-
|
401 |
-
current_model = "chatbot"
|
402 |
-
print("β
Gemma chatbot model loaded")
|
403 |
-
return chatbot_model, chatbot_processor
|
404 |
-
else:
|
405 |
-
print("β No HF_TOKEN found")
|
406 |
-
return None, None
|
407 |
except Exception as e:
|
408 |
-
print(f"β Error
|
409 |
import traceback
|
410 |
traceback.print_exc()
|
411 |
-
return None
|
412 |
-
|
413 |
-
def unload_chatbot_model():
|
414 |
-
"""Unload chatbot model to free memory"""
|
415 |
-
global chatbot_model, chatbot_processor, current_model
|
416 |
-
|
417 |
-
if chatbot_model is not None:
|
418 |
-
print("Unloading Gemma chatbot model...")
|
419 |
-
del chatbot_model, chatbot_processor
|
420 |
-
chatbot_model = None
|
421 |
-
chatbot_processor = None
|
422 |
-
if current_model == "chatbot":
|
423 |
-
current_model = None
|
424 |
-
if torch.cuda.is_available():
|
425 |
-
torch.cuda.empty_cache()
|
426 |
-
print("β
Gemma chatbot model unloaded")
|
427 |
|
428 |
|
429 |
# Global state for managing tabs
|
@@ -431,12 +413,10 @@ processed_markdown = ""
|
|
431 |
show_results_tab = False
|
432 |
document_chunks = []
|
433 |
document_embeddings = None
|
434 |
-
embedding_model = None
|
435 |
|
436 |
-
# Global model state
|
437 |
dolphin_model = None
|
438 |
-
|
439 |
-
chatbot_processor = None
|
440 |
current_model = None # Track which model is currently loaded
|
441 |
|
442 |
|
@@ -518,9 +498,8 @@ def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
|
518 |
document_embeddings = create_embeddings(document_chunks)
|
519 |
print(f"Created {len(document_chunks)} chunks")
|
520 |
|
521 |
-
#
|
522 |
progress(0.95, desc="Preparing chatbot...")
|
523 |
-
unload_dolphin_model()
|
524 |
|
525 |
show_results_tab = True
|
526 |
progress(1.0, desc="PDF processed successfully!")
|
@@ -549,11 +528,10 @@ def clear_all():
|
|
549 |
document_chunks = []
|
550 |
document_embeddings = None
|
551 |
|
552 |
-
# Unload
|
553 |
unload_dolphin_model()
|
554 |
-
unload_chatbot_model()
|
555 |
|
556 |
-
return None, "
|
557 |
|
558 |
|
559 |
# Create Gradio interface
|
@@ -608,12 +586,14 @@ with gr.Blocks(
|
|
608 |
# Home Tab
|
609 |
with gr.TabItem("π Home", id="home"):
|
610 |
embedding_status = "β
RAG ready" if embedding_model else "β RAG not loaded"
|
|
|
611 |
current_status = f"Currently loaded: {current_model or 'None'}"
|
612 |
gr.Markdown(
|
613 |
"# Scholar Express\n"
|
614 |
-
"### Upload a research paper to get a web-friendly version
|
615 |
f"**System:** {model_status}\n"
|
616 |
f"**RAG System:** {embedding_status}\n"
|
|
|
617 |
f"**Status:** {current_status}"
|
618 |
)
|
619 |
|
@@ -648,7 +628,7 @@ with gr.Blocks(
|
|
648 |
|
649 |
# Status output (hidden during processing)
|
650 |
status_output = gr.Markdown(
|
651 |
-
"
|
652 |
elem_classes="status-message"
|
653 |
)
|
654 |
|
@@ -685,7 +665,7 @@ with gr.Blocks(
|
|
685 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
686 |
|
687 |
gr.Markdown(
|
688 |
-
"*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) to find relevant sections and provide accurate answers.*",
|
689 |
elem_id="chat-notice"
|
690 |
)
|
691 |
|
@@ -714,7 +694,7 @@ with gr.Blocks(
|
|
714 |
outputs=[chat_tab]
|
715 |
)
|
716 |
|
717 |
-
# Chatbot functionality
|
718 |
def chatbot_response(message, history):
|
719 |
if not message.strip():
|
720 |
return history
|
@@ -723,61 +703,42 @@ with gr.Blocks(
|
|
723 |
return history + [[message, "β Please process a PDF document first before asking questions."]]
|
724 |
|
725 |
try:
|
726 |
-
#
|
727 |
-
model
|
728 |
|
729 |
-
if model is None
|
730 |
-
return history + [[message, "β Failed to
|
731 |
|
732 |
-
# Use RAG to get relevant chunks
|
733 |
if document_chunks and len(document_chunks) > 0:
|
734 |
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings)
|
735 |
context = "\n\n".join(relevant_chunks)
|
736 |
else:
|
737 |
# Fallback to truncated document if RAG fails
|
738 |
-
context = processed_markdown[:
|
739 |
-
|
740 |
-
# Create chat messages with shorter context
|
741 |
-
messages = [
|
742 |
-
{
|
743 |
-
"role": "system",
|
744 |
-
"content": [{"type": "text", "text": "You are a helpful assistant. Answer questions about the document concisely."}]
|
745 |
-
},
|
746 |
-
{
|
747 |
-
"role": "user",
|
748 |
-
"content": [{"type": "text", "text": f"Context:\n{context}\n\nQ: {message}"}]
|
749 |
-
}
|
750 |
-
]
|
751 |
|
752 |
-
#
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
input_len = inputs["input_ids"].shape[-1]
|
762 |
|
763 |
-
|
764 |
-
|
765 |
-
**inputs,
|
766 |
-
max_new_tokens=300, # Can be higher now with single model
|
767 |
-
do_sample=False,
|
768 |
-
temperature=0.7,
|
769 |
-
pad_token_id=processor.tokenizer.pad_token_id,
|
770 |
-
use_cache=True, # Can enable cache with single model
|
771 |
-
num_beams=1
|
772 |
-
)
|
773 |
-
generation = generation[0][input_len:]
|
774 |
|
775 |
-
|
776 |
|
777 |
-
return history + [[message,
|
778 |
|
779 |
except Exception as e:
|
780 |
error_msg = f"β Error generating response: {str(e)}"
|
|
|
|
|
|
|
781 |
return history + [[message, error_msg]]
|
782 |
|
783 |
send_btn.click(
|
|
|
15 |
from sentence_transformers import SentenceTransformer
|
16 |
import numpy as np
|
17 |
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
+
import google.generativeai as genai
|
19 |
RAG_DEPENDENCIES_AVAILABLE = True
|
20 |
except ImportError as e:
|
21 |
print(f"RAG dependencies not available: {e}")
|
22 |
+
print("Please install: pip install sentence-transformers scikit-learn google-generativeai")
|
23 |
RAG_DEPENDENCIES_AVAILABLE = False
|
24 |
SentenceTransformer = None
|
25 |
import os
|
|
|
321 |
# Don't load models initially - load them on demand
|
322 |
model_status = "β
Models ready (Dynamic loading)"
|
323 |
|
324 |
+
# Initialize embedding model and Gemini API
|
325 |
if RAG_DEPENDENCIES_AVAILABLE:
|
326 |
try:
|
327 |
print("Loading embedding model for RAG...")
|
|
|
328 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
|
329 |
print("β
Embedding model loaded successfully (CPU)")
|
330 |
+
|
331 |
+
# Initialize Gemini API
|
332 |
+
gemini_api_key = os.getenv('GEMINI_API_KEY')
|
333 |
+
if gemini_api_key:
|
334 |
+
genai.configure(api_key=gemini_api_key)
|
335 |
+
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
|
336 |
+
print("β
Gemini API configured successfully")
|
337 |
+
else:
|
338 |
+
print("β GEMINI_API_KEY not found in environment")
|
339 |
+
gemini_model = None
|
340 |
except Exception as e:
|
341 |
+
print(f"β Error loading models: {e}")
|
342 |
import traceback
|
343 |
traceback.print_exc()
|
344 |
embedding_model = None
|
345 |
+
gemini_model = None
|
346 |
else:
|
347 |
print("β RAG dependencies not available")
|
348 |
embedding_model = None
|
349 |
+
gemini_model = None
|
350 |
|
351 |
# Model management functions
|
352 |
def load_dolphin_model():
|
|
|
383 |
torch.cuda.empty_cache()
|
384 |
print("β
DOLPHIN model unloaded")
|
385 |
|
386 |
+
def initialize_gemini_model():
|
387 |
+
"""Initialize Gemini API model"""
|
388 |
+
global gemini_model
|
|
|
|
|
|
|
389 |
|
390 |
+
if gemini_model is not None:
|
391 |
+
return gemini_model
|
392 |
|
393 |
try:
|
394 |
+
gemini_api_key = os.getenv('GEMINI_API_KEY')
|
395 |
+
if not gemini_api_key:
|
396 |
+
print("β GEMINI_API_KEY not found in environment")
|
397 |
+
return None
|
398 |
+
|
399 |
+
print("Initializing Gemini API...")
|
400 |
+
genai.configure(api_key=gemini_api_key)
|
401 |
+
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
|
402 |
+
print("β
Gemini API model ready")
|
403 |
+
return gemini_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
except Exception as e:
|
405 |
+
print(f"β Error initializing Gemini model: {e}")
|
406 |
import traceback
|
407 |
traceback.print_exc()
|
408 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
|
411 |
# Global state for managing tabs
|
|
|
413 |
show_results_tab = False
|
414 |
document_chunks = []
|
415 |
document_embeddings = None
|
|
|
416 |
|
417 |
+
# Global model state
|
418 |
dolphin_model = None
|
419 |
+
gemini_model = None
|
|
|
420 |
current_model = None # Track which model is currently loaded
|
421 |
|
422 |
|
|
|
498 |
document_embeddings = create_embeddings(document_chunks)
|
499 |
print(f"Created {len(document_chunks)} chunks")
|
500 |
|
501 |
+
# Keep DOLPHIN model loaded for GPU usage
|
502 |
progress(0.95, desc="Preparing chatbot...")
|
|
|
503 |
|
504 |
show_results_tab = True
|
505 |
progress(1.0, desc="PDF processed successfully!")
|
|
|
528 |
document_chunks = []
|
529 |
document_embeddings = None
|
530 |
|
531 |
+
# Unload DOLPHIN model
|
532 |
unload_dolphin_model()
|
|
|
533 |
|
534 |
+
return None, "", gr.Tabs(visible=False)
|
535 |
|
536 |
|
537 |
# Create Gradio interface
|
|
|
586 |
# Home Tab
|
587 |
with gr.TabItem("π Home", id="home"):
|
588 |
embedding_status = "β
RAG ready" if embedding_model else "β RAG not loaded"
|
589 |
+
gemini_status = "β
Gemini API ready" if gemini_model else "β Gemini API not configured"
|
590 |
current_status = f"Currently loaded: {current_model or 'None'}"
|
591 |
gr.Markdown(
|
592 |
"# Scholar Express\n"
|
593 |
+
"### Upload a research paper to get a web-friendly version and an AI chatbot powered by Gemini API. DOLPHIN model runs on GPU for optimal performance.\n"
|
594 |
f"**System:** {model_status}\n"
|
595 |
f"**RAG System:** {embedding_status}\n"
|
596 |
+
f"**Gemini API:** {gemini_status}\n"
|
597 |
f"**Status:** {current_status}"
|
598 |
)
|
599 |
|
|
|
628 |
|
629 |
# Status output (hidden during processing)
|
630 |
status_output = gr.Markdown(
|
631 |
+
"",
|
632 |
elem_classes="status-message"
|
633 |
)
|
634 |
|
|
|
665 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
666 |
|
667 |
gr.Markdown(
|
668 |
+
"*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) with Gemini API to find relevant sections and provide accurate answers.*",
|
669 |
elem_id="chat-notice"
|
670 |
)
|
671 |
|
|
|
694 |
outputs=[chat_tab]
|
695 |
)
|
696 |
|
697 |
+
# Chatbot functionality with Gemini API
|
698 |
def chatbot_response(message, history):
|
699 |
if not message.strip():
|
700 |
return history
|
|
|
703 |
return history + [[message, "β Please process a PDF document first before asking questions."]]
|
704 |
|
705 |
try:
|
706 |
+
# Initialize Gemini model
|
707 |
+
model = initialize_gemini_model()
|
708 |
|
709 |
+
if model is None:
|
710 |
+
return history + [[message, "β Failed to initialize Gemini model. Please check your GEMINI_API_KEY."]]
|
711 |
|
712 |
+
# Use RAG to get relevant chunks from markdown
|
713 |
if document_chunks and len(document_chunks) > 0:
|
714 |
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings)
|
715 |
context = "\n\n".join(relevant_chunks)
|
716 |
else:
|
717 |
# Fallback to truncated document if RAG fails
|
718 |
+
context = processed_markdown[:2000] + "..." if len(processed_markdown) > 2000 else processed_markdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
|
720 |
+
# Create prompt for Gemini
|
721 |
+
prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely.
|
722 |
+
|
723 |
+
Context from the document:
|
724 |
+
{context}
|
725 |
+
|
726 |
+
Question: {message}
|
727 |
+
|
728 |
+
Please provide a clear and helpful answer based on the context provided."""
|
|
|
729 |
|
730 |
+
# Generate response using Gemini API
|
731 |
+
response = model.generate_content(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
|
733 |
+
response_text = response.text if hasattr(response, 'text') else str(response)
|
734 |
|
735 |
+
return history + [[message, response_text]]
|
736 |
|
737 |
except Exception as e:
|
738 |
error_msg = f"β Error generating response: {str(e)}"
|
739 |
+
print(f"Full error: {e}")
|
740 |
+
import traceback
|
741 |
+
traceback.print_exc()
|
742 |
return history + [[message, error_msg]]
|
743 |
|
744 |
send_btn.click(
|