Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import markdown
|
|
9 |
import cv2
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
12 |
-
from transformers import AutoProcessor, VisionEncoderDecoderModel
|
13 |
import torch
|
14 |
import os
|
15 |
import tempfile
|
@@ -312,10 +312,37 @@ except Exception as e:
|
|
312 |
dolphin_model = None
|
313 |
model_status = f"β Model failed to load: {str(e)}"
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
# Global state for managing tabs
|
317 |
processed_markdown = ""
|
318 |
show_results_tab = False
|
|
|
319 |
|
320 |
|
321 |
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
@@ -484,7 +511,7 @@ with gr.Blocks(
|
|
484 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
485 |
|
486 |
gr.Markdown(
|
487 |
-
"*
|
488 |
elem_id="chat-notice"
|
489 |
)
|
490 |
|
@@ -513,12 +540,74 @@ with gr.Blocks(
|
|
513 |
outputs=[chat_tab]
|
514 |
)
|
515 |
|
516 |
-
#
|
517 |
-
def
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
send_btn.click(
|
521 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
inputs=[msg_input, chatbot],
|
523 |
outputs=[chatbot]
|
524 |
).then(
|
|
|
9 |
import cv2
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
12 |
+
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
|
13 |
import torch
|
14 |
import os
|
15 |
import tempfile
|
|
|
312 |
dolphin_model = None
|
313 |
model_status = f"β Model failed to load: {str(e)}"
|
314 |
|
315 |
+
# Initialize chatbot model
|
316 |
+
try:
|
317 |
+
import os
|
318 |
+
# Get HuggingFace token from environment/secrets
|
319 |
+
hf_token = os.getenv('HF_TOKEN')
|
320 |
+
if hf_token:
|
321 |
+
os.environ['HF_TOKEN'] = hf_token
|
322 |
+
|
323 |
+
chatbot_model = Gemma3nForConditionalGeneration.from_pretrained(
|
324 |
+
"google/gemma-3n-e4b-it",
|
325 |
+
device_map="auto",
|
326 |
+
torch_dtype=torch.bfloat16,
|
327 |
+
use_auth_token=hf_token
|
328 |
+
).eval()
|
329 |
+
|
330 |
+
chatbot_processor = AutoProcessor.from_pretrained(
|
331 |
+
"google/gemma-3n-e4b-it",
|
332 |
+
use_auth_token=hf_token
|
333 |
+
)
|
334 |
+
|
335 |
+
print("Chatbot model loaded successfully")
|
336 |
+
except Exception as e:
|
337 |
+
print(f"Error loading chatbot model: {e}")
|
338 |
+
chatbot_model = None
|
339 |
+
chatbot_processor = None
|
340 |
+
|
341 |
|
342 |
# Global state for managing tabs
|
343 |
processed_markdown = ""
|
344 |
show_results_tab = False
|
345 |
+
chatbot_model = None
|
346 |
|
347 |
|
348 |
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
|
|
511 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
512 |
|
513 |
gr.Markdown(
|
514 |
+
"*Ask questions about your processed document. The AI will use the document content to provide accurate answers.*",
|
515 |
elem_id="chat-notice"
|
516 |
)
|
517 |
|
|
|
540 |
outputs=[chat_tab]
|
541 |
)
|
542 |
|
543 |
+
# Chatbot functionality
|
544 |
+
def chatbot_response(message, history):
|
545 |
+
if not message.strip():
|
546 |
+
return history
|
547 |
+
|
548 |
+
if chatbot_model is None:
|
549 |
+
return history + [[message, "β Chatbot model not loaded. Please check your HuggingFace token."]]
|
550 |
+
|
551 |
+
if not processed_markdown:
|
552 |
+
return history + [[message, "β Please process a PDF document first before asking questions."]]
|
553 |
+
|
554 |
+
try:
|
555 |
+
# Create context with the processed document
|
556 |
+
context = f"Document content:\n{processed_markdown[:3000]}..." if len(processed_markdown) > 3000 else f"Document content:\n{processed_markdown}"
|
557 |
+
|
558 |
+
# Create chat messages
|
559 |
+
messages = [
|
560 |
+
{
|
561 |
+
"role": "system",
|
562 |
+
"content": [{"type": "text", "text": "You are a helpful assistant that answers questions about documents. Use the provided document content to answer questions accurately."}]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"role": "user",
|
566 |
+
"content": [{"type": "text", "text": f"{context}\n\nQuestion: {message}"}]
|
567 |
+
}
|
568 |
+
]
|
569 |
+
|
570 |
+
# Process with the model
|
571 |
+
inputs = chatbot_processor.apply_chat_template(
|
572 |
+
messages,
|
573 |
+
add_generation_prompt=True,
|
574 |
+
tokenize=True,
|
575 |
+
return_dict=True,
|
576 |
+
return_tensors="pt",
|
577 |
+
).to(chatbot_model.device)
|
578 |
+
|
579 |
+
input_len = inputs["input_ids"].shape[-1]
|
580 |
+
|
581 |
+
with torch.inference_mode():
|
582 |
+
generation = chatbot_model.generate(
|
583 |
+
**inputs,
|
584 |
+
max_new_tokens=300,
|
585 |
+
do_sample=False,
|
586 |
+
temperature=0.7,
|
587 |
+
pad_token_id=chatbot_processor.tokenizer.pad_token_id
|
588 |
+
)
|
589 |
+
generation = generation[0][input_len:]
|
590 |
+
|
591 |
+
response = chatbot_processor.decode(generation, skip_special_tokens=True)
|
592 |
+
|
593 |
+
return history + [[message, response]]
|
594 |
+
|
595 |
+
except Exception as e:
|
596 |
+
error_msg = f"β Error generating response: {str(e)}"
|
597 |
+
return history + [[message, error_msg]]
|
598 |
|
599 |
send_btn.click(
|
600 |
+
fn=chatbot_response,
|
601 |
+
inputs=[msg_input, chatbot],
|
602 |
+
outputs=[chatbot]
|
603 |
+
).then(
|
604 |
+
lambda: "",
|
605 |
+
outputs=[msg_input]
|
606 |
+
)
|
607 |
+
|
608 |
+
# Also allow Enter key to send message
|
609 |
+
msg_input.submit(
|
610 |
+
fn=chatbot_response,
|
611 |
inputs=[msg_input, chatbot],
|
612 |
outputs=[chatbot]
|
613 |
).then(
|