raksa-the-wildcats commited on
Commit
ee78b3d
·
1 Parent(s): be257eb

Add all project files with proper LFS tracking

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +5 -0
  3. __pycache__/gradio_alt_text.cpython-312.pyc +0 -0
  4. __pycache__/gradio_final_app.cpython-312.pyc +0 -0
  5. __pycache__/gradio_gemma.cpython-312.pyc +0 -0
  6. __pycache__/gradio_gemma_alt_text.cpython-312.pyc +0 -0
  7. assets/demo.gif +3 -0
  8. assets/dolphin.png +3 -0
  9. assets/framework.png +3 -0
  10. chat.py +198 -0
  11. config/Dolphin.yaml +17 -0
  12. demo/.DS_Store +0 -0
  13. demo/element_imgs/.DS_Store +0 -0
  14. demo/element_imgs/block_formula.jpeg +3 -0
  15. demo/element_imgs/line_formula.jpeg +3 -0
  16. demo/element_imgs/markdown/.DS_Store +0 -0
  17. demo/element_imgs/markdown/table_1.md +2 -0
  18. demo/element_imgs/para_1.jpg +3 -0
  19. demo/element_imgs/para_2.jpg +3 -0
  20. demo/element_imgs/para_3.jpeg +3 -0
  21. demo/element_imgs/recognition_json/table_1.json +6 -0
  22. demo/element_imgs/table_1.jpeg +3 -0
  23. demo/element_imgs/table_2.jpeg +3 -0
  24. demo/page_imgs/.DS_Store +0 -0
  25. demo/page_imgs/markdown/.DS_Store +0 -0
  26. demo/page_imgs/markdown/figures/.DS_Store +0 -0
  27. demo/page_imgs/markdown/figures/test_page3_figure_000.png +3 -0
  28. demo/page_imgs/markdown/test_page3.md +22 -0
  29. demo/page_imgs/page_1.jpeg +3 -0
  30. demo/page_imgs/page_2.jpeg +3 -0
  31. demo/page_imgs/page_3.jpeg +3 -0
  32. demo/page_imgs/page_4.png +3 -0
  33. demo/page_imgs/page_5.jpg +3 -0
  34. demo/page_imgs/page_6.pdf +0 -0
  35. demo/page_imgs/page_7.jpeg +3 -0
  36. demo/page_imgs/recognition_json/page_1.json +178 -0
  37. demo/page_imgs/recognition_json/test_page.json +47 -0
  38. demo/page_imgs/recognition_json/test_page2.json +102 -0
  39. demo/page_imgs/recognition_json/test_page3.json +124 -0
  40. demo/page_imgs/test_page2.jpeg +3 -0
  41. demo/page_imgs/test_page3.jpeg +3 -0
  42. demo_element.py +129 -0
  43. demo_element_hf.py +195 -0
  44. demo_page.py +247 -0
  45. demo_page_hf.py +365 -0
  46. deployment/ReadMe.md +12 -0
  47. deployment/tensorrt_llm/ReadMe.md +89 -0
  48. deployment/tensorrt_llm/api_client.py +100 -0
  49. deployment/tensorrt_llm/api_server.py +112 -0
  50. deployment/tensorrt_llm/convert/__init__.py +0 -0
.DS_Store ADDED
Binary file (10.2 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
37
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
38
+ *.jpg filter=lfs diff=lfs merge=lfs -text
39
+ *.wav filter=lfs diff=lfs merge=lfs -text
40
+ *.gif filter=lfs diff=lfs merge=lfs -text
__pycache__/gradio_alt_text.cpython-312.pyc ADDED
Binary file (33.9 kB). View file
 
__pycache__/gradio_final_app.cpython-312.pyc ADDED
Binary file (30.4 kB). View file
 
__pycache__/gradio_gemma.cpython-312.pyc ADDED
Binary file (14.3 kB). View file
 
__pycache__/gradio_gemma_alt_text.cpython-312.pyc ADDED
Binary file (8.1 kB). View file
 
assets/demo.gif ADDED

Git LFS Details

  • SHA256: 003bcda91af8e23c007d6d1c5e23bee177c5735c7ba914b9ee33670829d59a2c
  • Pointer size: 132 Bytes
  • Size of remote file: 3.23 MB
assets/dolphin.png ADDED

Git LFS Details

  • SHA256: 3f462bb6eaf6cf9ba02caa04966ec354e1352f2cb1ac3e03ead082a0ba725170
  • Pointer size: 130 Bytes
  • Size of remote file: 83.3 kB
assets/framework.png ADDED

Git LFS Details

  • SHA256: f23f47c5ec092369a0707fa6e82ec4dd03ed10044b00ef10aff5f7c89570187e
  • Pointer size: 132 Bytes
  • Size of remote file: 2 MB
chat.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
3
+ SPDX-License-Identifier: MIT
4
+ """
5
+
6
+ import os
7
+ import warnings
8
+ from collections import OrderedDict
9
+
10
+ from omegaconf import ListConfig
11
+
12
+ warnings.filterwarnings("ignore", category=UserWarning)
13
+ warnings.filterwarnings("ignore", category=FutureWarning)
14
+ os.environ.setdefault("PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION", "python")
15
+
16
+ import torch
17
+ from PIL import Image
18
+ from transformers import PreTrainedTokenizerFast
19
+
20
+ from utils.model import DonutConfig, DonutModel, SwinEncoder
21
+ from utils.processor import DolphinProcessor
22
+
23
+
24
+ def try_rename_lagacy_weights(ckpt, output_path=""):
25
+ if "state_dict" in ckpt.keys():
26
+ ckpt = ckpt["state_dict"]
27
+ if "module" in ckpt.keys():
28
+ ckpt = ckpt["module"]
29
+ new_ckpt = OrderedDict()
30
+ for k, v in ckpt.items():
31
+ if k.startswith("model."):
32
+ k = k[len("model.") :]
33
+ if k.startswith("encoder"):
34
+ new_ckpt["vpm" + k[len("encoder") :]] = v
35
+ elif k.startswith("decoder"):
36
+ new_ckpt["llm" + k[len("encoder") :]] = v
37
+ else:
38
+ new_ckpt[k] = v
39
+ if output_path:
40
+ torch.save(new_ckpt, output_path)
41
+ return new_ckpt
42
+
43
+
44
+ def convert_listconfig_to_list(config):
45
+ new_config = {}
46
+ for k, v in config.items():
47
+ if isinstance(v, ListConfig):
48
+ new_config[k] = list(v)
49
+ else:
50
+ new_config[k] = v
51
+ return new_config
52
+
53
+
54
+ class DOLPHIN:
55
+ def __init__(self, config, ckpt_path="") -> None:
56
+ self.model_args = config.model
57
+ self.swin_args = config.model.pop("swin_args")
58
+ self.swin_args = convert_listconfig_to_list(self.swin_args)
59
+
60
+ vision_tower = SwinEncoder(
61
+ input_size=self.swin_args["img_size"],
62
+ patch_size=self.swin_args["patch_size"],
63
+ embed_dim=self.swin_args["embed_dim"],
64
+ window_size=self.swin_args["window_size"],
65
+ encoder_layer=self.swin_args["encoder_layer"],
66
+ num_heads=self.swin_args["num_heads"],
67
+ align_long_axis=self.swin_args["align_long_axis"],
68
+ )
69
+
70
+ self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=self.model_args.tokenizer_path)
71
+ self.tokenizer.pad_token = "<pad>"
72
+ self.tokenizer.bos_token = "<s>"
73
+ self.tokenizer.eos_token = "</s>"
74
+ self.tokenizer.unk_token = "<unk>"
75
+
76
+ if self.model_args.get("extra_answer_tokens", False):
77
+ # print("Allowing multitask training: adding <Answer/> to the tokenizer.")
78
+ prompt_end_token = " <Answer/>"
79
+ self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set([prompt_end_token]))})
80
+ self.tokenizer._prompt_end_token = prompt_end_token
81
+ self.tokenizer._prompt_end_token_id = self.tokenizer.convert_tokens_to_ids(prompt_end_token)
82
+
83
+ donut_config = DonutConfig(
84
+ decoder_layer=self.model_args.decoder_layer,
85
+ max_length=self.model_args.max_length,
86
+ max_position_embeddings=self.model_args.max_position_embeddings,
87
+ hidden_dimension=self.model_args.hidden_dimension,
88
+ )
89
+
90
+ self.model = DonutModel(config=donut_config, vision_tower=vision_tower, tokenizer=self.tokenizer)
91
+ if self.model_args.model_name_or_path:
92
+ ckpt = torch.load(self.model_args.model_name_or_path)
93
+ ckpt = try_rename_lagacy_weights(ckpt)
94
+ self.model.load_state_dict(ckpt, strict=True)
95
+
96
+ device = "cuda" if torch.cuda.is_available() else "cpu"
97
+ self.model.to(device)
98
+ self.model.eval()
99
+ transform_args = {
100
+ "input_size": self.swin_args["img_size"],
101
+ "max_length": self.model_args.max_length,
102
+ }
103
+ self.processor = DolphinProcessor({}, self.tokenizer, transform_args=transform_args)
104
+
105
+ def chat(
106
+ self,
107
+ question,
108
+ image,
109
+ return_raw=False,
110
+ return_score=False,
111
+ return_img_size=False,
112
+ only_return_img_size=False,
113
+ max_batch_size=16,
114
+ ):
115
+
116
+ def _preprocess_image(image):
117
+ if isinstance(image, str):
118
+ image = Image.open(image).convert("RGB")
119
+ if return_img_size or only_return_img_size:
120
+ image_tensor, ori_size = self.processor.process_image_for_inference(image, return_img_size=True)
121
+ else:
122
+ image_tensor = self.processor.process_image_for_inference(image, return_img_size=False)
123
+ ori_size = None
124
+ return image_tensor, ori_size
125
+
126
+ def _preprocess_prompt(question):
127
+ if self.model_args.get("extra_answer_tokens", False):
128
+ if self.tokenizer._prompt_end_token not in question:
129
+ question = question + self.tokenizer._prompt_end_token
130
+ prompt_ids = self.processor.process_prompt_for_inference(question)
131
+ return prompt_ids
132
+
133
+ def _preprocess_prompt_batch(question):
134
+ if self.model_args.get("extra_answer_tokens", False):
135
+ for i in range(len(question)):
136
+ if self.tokenizer._prompt_end_token not in question[i]:
137
+ question[i] = question[i] + self.tokenizer._prompt_end_token
138
+ if not question[i].startswith("<s>"):
139
+ question[i] = "<s>" + question[i]
140
+ return question
141
+
142
+ def _postprocess(output, question):
143
+ output = output.replace("<s>", "").replace(question, "").replace("</s>", "").replace("<pad>", "")
144
+ if self.model_args.get("extra_answer_tokens", False):
145
+ output = output.split(self.tokenizer._prompt_end_token)[-1]
146
+ return output
147
+
148
+ if isinstance(question, list):
149
+ image_tensor_list = []
150
+ for i in image:
151
+ image_tensor, ori_size = _preprocess_image(i)
152
+ image_tensor_list.append(image_tensor)
153
+ image_tensor = torch.cat(image_tensor_list, dim=0)
154
+
155
+ question = _preprocess_prompt_batch(question)
156
+ self.processor.tokenizer.padding_side = "left"
157
+ prompt_ids = self.processor.tokenizer(
158
+ question, add_special_tokens=False, return_tensors="pt", padding=True
159
+ ).input_ids
160
+ else:
161
+ image_tensor, ori_size = _preprocess_image(image)
162
+ prompt_ids = _preprocess_prompt(question)
163
+
164
+ if only_return_img_size:
165
+ return ori_size
166
+
167
+ model_output_batch = []
168
+ for i in range(0, image_tensor.shape[0], max_batch_size):
169
+ image_tensor_batch = image_tensor[i : i + max_batch_size]
170
+ prompt_ids_batch = prompt_ids[i : i + max_batch_size]
171
+ model_output = self.model.inference(image_tensors=image_tensor_batch, prompt_ids=prompt_ids_batch)
172
+ model_output_batch.append(model_output)
173
+ model_output = {}
174
+ for k, v in model_output_batch[0].items():
175
+ if isinstance(v, torch.Tensor):
176
+ model_output[k] = sum(
177
+ [v_batch[k].cpu().numpy().tolist() for v_batch in model_output_batch],
178
+ [],
179
+ )
180
+ else:
181
+ model_output[k] = sum([v_batch[k] for v_batch in model_output_batch], [])
182
+
183
+ if return_raw:
184
+ if return_img_size:
185
+ return model_output, ori_size
186
+ return model_output
187
+ else:
188
+ if isinstance(question, list):
189
+ output = [_postprocess(model_output["repetitions"][i], question[i]) for i in range(len(question))]
190
+ score = model_output["scores"]
191
+ else:
192
+ output = _postprocess(model_output["repetitions"][0], question)
193
+ score = model_output["scores"][0]
194
+ if return_score:
195
+ return output, score
196
+ if return_img_size:
197
+ return output, ori_size
198
+ return output
config/Dolphin.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ model_name_or_path: "./checkpoints/dolphin_model.bin"
3
+ tokenizer_path: "./checkpoints/dolphin_tokenizer.json"
4
+ extra_answer_tokens: True # add <Answer/> token
5
+ max_length: 4096
6
+ decoder_layer: 10
7
+ max_position_embeddings: 4096
8
+ hidden_dimension: 1024
9
+ swin_args:
10
+ name: 'swin'
11
+ img_size: [896, 896]
12
+ patch_size: 4
13
+ embed_dim: 128
14
+ align_long_axis: False
15
+ window_size: 7
16
+ encoder_layer: [2, 2, 14, 2]
17
+ num_heads: [4, 8, 16, 32]
demo/.DS_Store ADDED
Binary file (6.15 kB). View file
 
demo/element_imgs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
demo/element_imgs/block_formula.jpeg ADDED

Git LFS Details

  • SHA256: 5dc9c328d058816ef31d878a0d42f0751606afd3b77854057910a81451dae1b4
  • Pointer size: 130 Bytes
  • Size of remote file: 92.5 kB
demo/element_imgs/line_formula.jpeg ADDED

Git LFS Details

  • SHA256: 65e2be8cc82c609364e1f921cacb822213f0ca2eafd86f5721b6f0499ceb8712
  • Pointer size: 130 Bytes
  • Size of remote file: 55.3 kB
demo/element_imgs/markdown/.DS_Store ADDED
Binary file (6.15 kB). View file
 
demo/element_imgs/markdown/table_1.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ <table><tr><td></td><td></td><td>100-class (top-1 acc.)</td><td>1000-class (top-1 acc.)</td></tr><tr><td colspan="2">4096-d (float)</td><td>77.1 ± 1.5</td><td>65.0</td></tr><tr><td rowspan="3">1024 bits</td><td>BP</td><td>72.9 ± 1.3</td><td>58.1</td></tr><tr><td>CBE</td><td>73.0 ± 1.3</td><td>59.2</td></tr><tr><td>SP</td><td>73.8 ± 1.3</td><td>60.1</td></tr><tr><td rowspan="4">4096 bits</td><td>threshold [1]</td><td>73.5 ± 1.4</td><td>59.1</td></tr><tr><td>BP</td><td>76.0 ± 1.5</td><td>63.2</td></tr><tr><td>CBE</td><td>75.9 ± 1.4</td><td>63.0</td></tr><tr><td>SP</td><td>76.3 ± 1.5</td><td>63.3</td></tr><tr><td>8192 bits</td><td>SP</td><td>76.8 ± 1.4</td><td>64.2</td></tr><tr><td>16384 bits</td><td>SP</td><td>77.1 ± 1.6</td><td>64.5</td></tr></table>
2
+
demo/element_imgs/para_1.jpg ADDED

Git LFS Details

  • SHA256: 68308a404e8e4c111f5cc1568e7f4b74f1f0c08ad4485e2ad9e78869f79a556b
  • Pointer size: 130 Bytes
  • Size of remote file: 18.7 kB
demo/element_imgs/para_2.jpg ADDED

Git LFS Details

  • SHA256: 8d9eda1c71490b76ac5d3ef33f436fb6e6db4ca3b625d5d74f35c3b248949c56
  • Pointer size: 130 Bytes
  • Size of remote file: 69.8 kB
demo/element_imgs/para_3.jpeg ADDED

Git LFS Details

  • SHA256: b372541d80263c5508b8b85ccf847123874efdb4c25473845fbf042f2d9cc5a9
  • Pointer size: 130 Bytes
  • Size of remote file: 84 kB
demo/element_imgs/recognition_json/table_1.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "label": "tab",
4
+ "text": "<table><tr><td></td><td></td><td>100-class (top-1 acc.)</td><td>1000-class (top-1 acc.)</td></tr><tr><td colspan=\"2\">4096-d (float)</td><td>77.1 ± 1.5</td><td>65.0</td></tr><tr><td rowspan=\"3\">1024 bits</td><td>BP</td><td>72.9 ± 1.3</td><td>58.1</td></tr><tr><td>CBE</td><td>73.0 ± 1.3</td><td>59.2</td></tr><tr><td>SP</td><td>73.8 ± 1.3</td><td>60.1</td></tr><tr><td rowspan=\"4\">4096 bits</td><td>threshold [1]</td><td>73.5 ± 1.4</td><td>59.1</td></tr><tr><td>BP</td><td>76.0 ± 1.5</td><td>63.2</td></tr><tr><td>CBE</td><td>75.9 ± 1.4</td><td>63.0</td></tr><tr><td>SP</td><td>76.3 ± 1.5</td><td>63.3</td></tr><tr><td>8192 bits</td><td>SP</td><td>76.8 ± 1.4</td><td>64.2</td></tr><tr><td>16384 bits</td><td>SP</td><td>77.1 ± 1.6</td><td>64.5</td></tr></table>"
5
+ }
6
+ ]
demo/element_imgs/table_1.jpeg ADDED

Git LFS Details

  • SHA256: 1ccce9dab1a1b537ae502183f461ad3331a2b9eeb8574790e6ec43ca54f24e2c
  • Pointer size: 131 Bytes
  • Size of remote file: 183 kB
demo/element_imgs/table_2.jpeg ADDED

Git LFS Details

  • SHA256: 3fdc67f4bb8afee58ff4ee84412581deb771cf26f5fe9eead742108700e9650e
  • Pointer size: 131 Bytes
  • Size of remote file: 406 kB
demo/page_imgs/.DS_Store ADDED
Binary file (8.2 kB). View file
 
demo/page_imgs/markdown/.DS_Store ADDED
Binary file (6.15 kB). View file
 
demo/page_imgs/markdown/figures/.DS_Store ADDED
Binary file (6.15 kB). View file
 
demo/page_imgs/markdown/figures/test_page3_figure_000.png ADDED

Git LFS Details

  • SHA256: eba97bcb2eefbc653f4b5db7572799a9674b8fd39e5f14d261c33e1916a9f009
  • Pointer size: 130 Bytes
  • Size of remote file: 63.4 kB
demo/page_imgs/markdown/test_page3.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ![Figure](figures/test_page3_figure_000.png)
2
+
3
+ Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.
4
+
5
+ query with all keys, divide each by $\sqrt{d_k}$ , and apply a softmax function to obtain the weights on the values.
6
+
7
+ In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix $Q$ . The keys and values are also packed together into matrices $K$ and $V$ . We compute the matrix of outputs as: $$ \\ \text{Attention}(Q, K, V) = \mathrm{softmax}(\frac{QK^T}{\sqrt{d_k}})V \\ $$
8
+
9
+ The two most commonly used attention functions are additive attention [2] , and dot-product (multiplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of $\frac{1}{\sqrt{d_k}}$ . Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
10
+
11
+ While for small values of $d_k$ the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of $d_k$ [ 3 ] . We suspect that for large values of $d_k$ , the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients 4 To counteract this effect, we scale the dot products by $\frac{1}{\sqrt{d_k}}$ .
12
+
13
+ 3.2.2 Multi-Head Attention
14
+
15
+ Instead of performing a single attention function with $d_{\text{model}}$ -dimensional keys, values and queries, we found it beneficial to linearly project the queries, keys and values $h$ times with different, learned linear projections to $d_k$ , $d_k$ and $d_v$ dimensions, respectively. On each of these projected versions of queries, keys and values we then perform the attention function in parallel, yielding $d_v$ -dimensional output values. These are concatenated and once again projected, resulting in the final values, as depicted in Figure 2 .
16
+
17
+ Multi­head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this.
18
+
19
+ ${ }^{4}$ To illustrate why the dot products get large, assume that the components of $q$ and $k$ are independent random variables with mean 0 and variance 1 . Then their dot product, $q \cdot k=\sum_{i=1}^{d_{k}} q_{i} k_{i}$, has mean 0 and variance $d_{k}$.
20
+
21
+ 4
22
+
demo/page_imgs/page_1.jpeg ADDED

Git LFS Details

  • SHA256: aba4e06f5debeb14a59a193818f6787aa06f17f4cb21c0e483d8267f5397b627
  • Pointer size: 132 Bytes
  • Size of remote file: 1.52 MB
demo/page_imgs/page_2.jpeg ADDED

Git LFS Details

  • SHA256: 25e08746f10d4472d80659869eb73a477ad665d7aaaa850e70aae1bd6076d826
  • Pointer size: 132 Bytes
  • Size of remote file: 1.47 MB
demo/page_imgs/page_3.jpeg ADDED

Git LFS Details

  • SHA256: fe6e35a3c888c77ec36cf48cb762556e489e288d30a457a353ac6bba6fab9251
  • Pointer size: 131 Bytes
  • Size of remote file: 449 kB
demo/page_imgs/page_4.png ADDED

Git LFS Details

  • SHA256: 497cdabe38a4db8318284c0f8963304a876ceceebb796059903703834e4713ed
  • Pointer size: 131 Bytes
  • Size of remote file: 372 kB
demo/page_imgs/page_5.jpg ADDED

Git LFS Details

  • SHA256: 17cdc261fcd7eb8db4a0bdfb56dc2b1f77c8890956f8451f810695e115f6f894
  • Pointer size: 131 Bytes
  • Size of remote file: 641 kB
demo/page_imgs/page_6.pdf ADDED
The diff for this file is too large to render. See raw diff
 
demo/page_imgs/page_7.jpeg ADDED

Git LFS Details

  • SHA256: 19bb9afdb859e905e017fc3d3bac6da0490093811820529f285a20e8d70609f2
  • Pointer size: 132 Bytes
  • Size of remote file: 1.27 MB
demo/page_imgs/recognition_json/page_1.json ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "label": "title",
4
+ "bbox": [
5
+ 271,
6
+ 188,
7
+ 1194,
8
+ 221
9
+ ],
10
+ "text": "LLaMA: Open and Efficient Foundation Language Models",
11
+ "reading_order": 0
12
+ },
13
+ {
14
+ "label": "author",
15
+ "bbox": [
16
+ 313,
17
+ 272,
18
+ 1154,
19
+ 317
20
+ ],
21
+ "text": "Hugo Touvron; Thibaut Lavril*, Gautier Izacard*, Xavier Martinet",
22
+ "reading_order": 1
23
+ },
24
+ {
25
+ "label": "para",
26
+ "bbox": [
27
+ 269,
28
+ 317,
29
+ 1201,
30
+ 425
31
+ ],
32
+ "text": "Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal\nEric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin\nEdouard Grave*Guillaume Lample*",
33
+ "reading_order": 2
34
+ },
35
+ {
36
+ "label": "para",
37
+ "bbox": [
38
+ 685,
39
+ 440,
40
+ 795,
41
+ 482
42
+ ],
43
+ "text": "Meta AI",
44
+ "reading_order": 3
45
+ },
46
+ {
47
+ "label": "sec",
48
+ "bbox": [
49
+ 376,
50
+ 524,
51
+ 502,
52
+ 565
53
+ ],
54
+ "text": "\\begin{abstract}",
55
+ "reading_order": 4
56
+ },
57
+ {
58
+ "label": "para",
59
+ "bbox": [
60
+ 209,
61
+ 586,
62
+ 675,
63
+ 946
64
+ ],
65
+ "text": "We introduce LLaMA, a collection of founda-\ntion language models ranging from 7B to 65B\nparameters. We train our models on trillions\nof tokens, and show that it is possible to train\nstate-of-the-art models using publicly avail-\nable datasets exclusively, without resorting\nto proprietary and inaccessible datasets. In\nparticular, LLaMA-13B outperforms GPT-3\n(175B) on most benchmarks, and LLaMA-\n65B is competitive with the best models,\nChinchilla-70B and PaLM-540B. We release\nall our models to the research community $^1$ .",
66
+ "reading_order": 5
67
+ },
68
+ {
69
+ "label": "sec",
70
+ "bbox": [
71
+ 167,
72
+ 964,
73
+ 376,
74
+ 1006
75
+ ],
76
+ "text": "1 Introduction",
77
+ "reading_order": 6
78
+ },
79
+ {
80
+ "label": "para",
81
+ "bbox": [
82
+ 167,
83
+ 1027,
84
+ 718,
85
+ 1498
86
+ ],
87
+ "text": "Large Languages Models (LLMs) trained on mas-\nsive corpora of texts have shown their ability to per-\nform new tasks from textual instructions or from a\nfew examples ( Brown et al. , 2020 ) . These few-shot\nproperties first appeared when scaling models to a\nsufficient size ( Kaplan et al. , 2020 ) , resulting in a\nline of work that focuses on further scaling these\nmodels ( Chowdhery et al. , 2022 ; Rae et al. , 2021 ) .\nThese efforts are based on the assumption that\nmore parameters will lead to better performance.\nHowever, recent work from Hoffmann et al. ( 2022 )\nshows that, for a given compute budget, the best\nperformances are not achieved by the largest mod-\nels, but by smaller models trained on more data.",
88
+ "reading_order": 7
89
+ },
90
+ {
91
+ "label": "para",
92
+ "bbox": [
93
+ 167,
94
+ 1506,
95
+ 717,
96
+ 1844
97
+ ],
98
+ "text": "The objective of the scaling laws from Hoff-\nmann et al. ( 2022 ) is to determine how to best\nscale the dataset and model sizes for a particular\ntraining compute budget. However, this objective\ndisregards the inference budget, which becomes\ncritical when serving a language model at scale.\nIn this context, given a target level of performance,\nthe preferred model is not the fastest to train but the\nfastest at inference, and although it may be cheaper\nto train a large model to reach a certain level of",
99
+ "reading_order": 8
100
+ },
101
+ {
102
+ "label": "para",
103
+ "bbox": [
104
+ 753,
105
+ 539,
106
+ 1304,
107
+ 734
108
+ ],
109
+ "text": "performance, a smaller one trained longer will\nultimately be cheaper at inference. For instance,\nalthough Hoffmann et al. ( 2022 ) recommends\ntraining a 10B model on 200B tokens, we find\nthat the performance of a 7B model continues to\nimprove even after 1T tokens.",
110
+ "reading_order": 9
111
+ },
112
+ {
113
+ "label": "para",
114
+ "bbox": [
115
+ 753,
116
+ 769,
117
+ 1305,
118
+ 1236
119
+ ],
120
+ "text": "The focus of this work is to train a series of\nlanguage models that achieve the best possible per-\nformance at various inference budgets, by training\non more tokens than what is typically used. The\nresulting models, called LLaMA , ranges from 7B\nto 65B parameters with competitive performance\ncompared to the best existing LLMs. For instance,\nLLaMA-13B outperforms GPT-3 on most bench-\nmarks, despite being 10 $\\times$ smaller. We believe that\nthis model will help democratize the access and\nstudy of LLMs, since it can be run on a single GPU.\nAt the higher-end of the scale, our 65B-parameter\nmodel is also competitive with the best large lan-\nguage models such as Chinchilla or PaLM-540B.",
121
+ "reading_order": 10
122
+ },
123
+ {
124
+ "label": "para",
125
+ "bbox": [
126
+ 753,
127
+ 1257,
128
+ 1305,
129
+ 1601
130
+ ],
131
+ "text": "Unlike Chinchilla, PaLM, or GPT-3, we only\nuse publicly available data, making our work com-\npatible with open-sourcing, while most existing\nmodels rely on data which is either not publicly\navailable or undocumented (e.g. “ Books – 2TB ” or\n“ Social media conversations ” ). There exist some\nexceptions, notably OPT ( Zhang et al. , 2022 ) ,\nGPT-NeoX ( Black et al. , 2022 ) , BLOOM ( Scao\net al. , 2022 ) and GLM ( Zeng et al. , 2022 ) , but none\nthat are competitive with PaLM-62B or Chinchilla.",
132
+ "reading_order": 11
133
+ },
134
+ {
135
+ "label": "para",
136
+ "bbox": [
137
+ 753,
138
+ 1634,
139
+ 1304,
140
+ 1933
141
+ ],
142
+ "text": "In the rest of this paper, we present an overview\nof the modifications we made to the transformer\narchitecture ( Vaswani et al. , 2017 ) , as well as our\ntraining method. We then report the performance of\nour models and compare with others LLMs on a set\nof standard benchmarks. Finally, we expose some\nof the biases and toxicity encoded in our models,\nusing some of the most recent benchmarks from\nthe responsible AI community.",
143
+ "reading_order": 12
144
+ },
145
+ {
146
+ "label": "fnote",
147
+ "bbox": [
148
+ 167,
149
+ 1844,
150
+ 712,
151
+ 1907
152
+ ],
153
+ "text": "* Equal contribution.\nCorrespondence:\n{htouvron\nthibautlav,gizacard,egrave,glample}@meta.com",
154
+ "reading_order": 13
155
+ },
156
+ {
157
+ "label": "fnote",
158
+ "bbox": [
159
+ 209,
160
+ 1907,
161
+ 632,
162
+ 1931
163
+ ],
164
+ "text": "https://github.com/facebookresearch/llama",
165
+ "reading_order": 14
166
+ },
167
+ {
168
+ "label": "watermark",
169
+ "bbox": [
170
+ 20,
171
+ 649,
172
+ 83,
173
+ 1530
174
+ ],
175
+ "text": "arXiv:2302.1397lvl [cs.CL] 27 Feb 2023",
176
+ "reading_order": 15
177
+ }
178
+ ]
demo/page_imgs/recognition_json/test_page.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "label": "header",
4
+ "bbox": [
5
+ 291,
6
+ 90,
7
+ 675,
8
+ 120
9
+ ],
10
+ "text": "Scaled Dot-Product Attention",
11
+ "reading_order": 0
12
+ },
13
+ {
14
+ "label": "fig",
15
+ "text": "![Figure](figures/test_page_figure_001.png)",
16
+ "figure_path": "figures/test_page_figure_001.png",
17
+ "bbox": [
18
+ 1274,
19
+ 105,
20
+ 1536,
21
+ 627
22
+ ],
23
+ "reading_order": 1
24
+ },
25
+ {
26
+ "label": "cap",
27
+ "bbox": [
28
+ 168,
29
+ 719,
30
+ 1413,
31
+ 789
32
+ ],
33
+ "text": "Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several\nattention layers running in parallel.",
34
+ "reading_order": 2
35
+ },
36
+ {
37
+ "label": "para",
38
+ "bbox": [
39
+ 168,
40
+ 858,
41
+ 1413,
42
+ 934
43
+ ],
44
+ "text": "query with all keys, divide each by $\\sqrt{d_{k}}$, and apply a softmax function to obtain the weights on the\nvalues.",
45
+ "reading_order": 3
46
+ }
47
+ ]
demo/page_imgs/recognition_json/test_page2.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "label": "fig",
4
+ "text": "![Figure](figures/test_page2_figure_000.png)",
5
+ "figure_path": "figures/test_page2_figure_000.png",
6
+ "bbox": [
7
+ 394,
8
+ 117,
9
+ 897,
10
+ 837
11
+ ],
12
+ "reading_order": 0
13
+ },
14
+ {
15
+ "label": "cap",
16
+ "bbox": [
17
+ 445,
18
+ 852,
19
+ 856,
20
+ 873
21
+ ],
22
+ "text": "Figure 1: The Transformer - model architecture",
23
+ "reading_order": 1
24
+ },
25
+ {
26
+ "label": "para",
27
+ "bbox": [
28
+ 218,
29
+ 920,
30
+ 1086,
31
+ 1044
32
+ ],
33
+ "text": "wise fully connected feed-forward network. We employ a residual connection [ 10 ] around each of\nthe two sub-layers, followed by layer normalization [ 1 ] . That is, the output of each sub-layer is\n$\\mathrm{LayerNorm}(x+\\mathrm{Sublayer}(x))$ , where $\\mathrm{Sublayer}(x)$ is the function implemented by the sub-layer\nitself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding\nlayers, produce outputs of dimension $d_{\\text{model}}=512$ .",
34
+ "reading_order": 2
35
+ },
36
+ {
37
+ "label": "para",
38
+ "bbox": [
39
+ 218,
40
+ 1071,
41
+ 1085,
42
+ 1244
43
+ ],
44
+ "text": "The The decoder is also composed of a stack of $N=6$ identical layers. In addition to the two\nsub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head\nattention over the output of the encoder stack. Similar to the encoder, we employ residual connections\naround each of the sub-layers, followed by layer normalization. We also modify the self-attention\nsub-layer in the decoder stack to prevent positions from attending to subsequent positions. This\nmasking, combined with fact that the output embeddings are offset by one position, ensures that the\npredictions for position $i$ can depend only on the known outputs at positions less than $i$ .",
45
+ "reading_order": 3
46
+ },
47
+ {
48
+ "label": "sub_sec",
49
+ "bbox": [
50
+ 226,
51
+ 1283,
52
+ 344,
53
+ 1305
54
+ ],
55
+ "text": "3.2 Attention",
56
+ "reading_order": 4
57
+ },
58
+ {
59
+ "label": "para",
60
+ "bbox": [
61
+ 218,
62
+ 1322,
63
+ 1087,
64
+ 1422
65
+ ],
66
+ "text": "An attention function can be described as mapping a query and a set of key-value pairs to an output,\nwhere the query, keys, values, and output are all vectors. The output is computed as a weighted sum\nof the values, where the weight assigned to each value is computed by a compatibility function of the\nquery with the corresponding key.",
67
+ "reading_order": 5
68
+ },
69
+ {
70
+ "label": "sub_sub_sec",
71
+ "bbox": [
72
+ 218,
73
+ 1456,
74
+ 562,
75
+ 1474
76
+ ],
77
+ "text": "3.2.1 Scaled Dot-Product Attention",
78
+ "reading_order": 6
79
+ },
80
+ {
81
+ "label": "para",
82
+ "bbox": [
83
+ 218,
84
+ 1498,
85
+ 1085,
86
+ 1546
87
+ ],
88
+ "text": "We call our particular attention \"Scaled Dot-Product Attention\" (Figure 2 ). The input consists of\nqueries and keys of dimension $d_k$ , and values of dimension $d_v$ . We compute the dot products of the",
89
+ "reading_order": 7
90
+ },
91
+ {
92
+ "label": "foot",
93
+ "bbox": [
94
+ 646,
95
+ 1590,
96
+ 662,
97
+ 1607
98
+ ],
99
+ "text": "3",
100
+ "reading_order": 8
101
+ }
102
+ ]
demo/page_imgs/recognition_json/test_page3.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "label": "fig",
4
+ "text": "![Figure](figures/test_page3_figure_000.png)",
5
+ "figure_path": "figures/test_page3_figure_000.png",
6
+ "bbox": [
7
+ 331,
8
+ 134,
9
+ 984,
10
+ 489
11
+ ],
12
+ "reading_order": 0
13
+ },
14
+ {
15
+ "label": "cap",
16
+ "bbox": [
17
+ 198,
18
+ 554,
19
+ 1065,
20
+ 603
21
+ ],
22
+ "text": "Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several\nattention layers running in parallel.",
23
+ "reading_order": 1
24
+ },
25
+ {
26
+ "label": "para",
27
+ "bbox": [
28
+ 198,
29
+ 652,
30
+ 1065,
31
+ 701
32
+ ],
33
+ "text": "query with all keys, divide each by $\\sqrt{d_k}$ , and apply a softmax function to obtain the weights on the\nvalues.",
34
+ "reading_order": 2
35
+ },
36
+ {
37
+ "label": "para",
38
+ "bbox": [
39
+ 198,
40
+ 715,
41
+ 1065,
42
+ 881
43
+ ],
44
+ "text": "In practice, we compute the attention function on a set of queries simultaneously, packed together\ninto a matrix $Q$ . The keys and values are also packed together into matrices $K$ and $V$ . We compute\nthe matrix of outputs as:\n\\[\n \\text{Attention}(Q, K, V) = \\mathrm{softmax}(\\frac{QK^T}{\\sqrt{d_k}})V\n\\]",
45
+ "reading_order": 3
46
+ },
47
+ {
48
+ "label": "para",
49
+ "bbox": [
50
+ 198,
51
+ 913,
52
+ 1068,
53
+ 1060
54
+ ],
55
+ "text": "The two most commonly used attention functions are additive attention [2] , and dot-product (multi-\nplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor\nof $\\frac{1}{\\sqrt{d_k}}$ . Additive attention computes the compatibility function using a feed-forward network with\na single hidden layer. While the two are similar in theoretical complexity, dot-product attention is\nmuch faster and more space-efficient in practice, since it can be implemented using highly optimized\nmatrix multiplication code.",
56
+ "reading_order": 4
57
+ },
58
+ {
59
+ "label": "para",
60
+ "bbox": [
61
+ 198,
62
+ 1074,
63
+ 1066,
64
+ 1175
65
+ ],
66
+ "text": "While for small values of $d_k$ the two mechanisms perform similarly, additive attention outperforms\ndot product attention without scaling for larger values of $d_k$ [ 3 ] . We suspect that for large values of\n$d_k$ , the dot products grow large in magnitude, pushing the softmax function into regions where it has\nextremely small gradients 4 To counteract this effect, we scale the dot products by $\\frac{1}{\\sqrt{d_k}}$ .",
67
+ "reading_order": 5
68
+ },
69
+ {
70
+ "label": "sub_sub_sec",
71
+ "bbox": [
72
+ 198,
73
+ 1207,
74
+ 467,
75
+ 1225
76
+ ],
77
+ "text": "3.2.2 Multi-Head Attention",
78
+ "reading_order": 6
79
+ },
80
+ {
81
+ "label": "para",
82
+ "bbox": [
83
+ 198,
84
+ 1253,
85
+ 1067,
86
+ 1395
87
+ ],
88
+ "text": "Instead of performing a single attention function with $d_{\\text{model}}$ -dimensional keys, values and queries,\nwe found it beneficial to linearly project the queries, keys and values $h$ times with different, learned\nlinear projections to $d_k$ , $d_k$ and $d_v$ dimensions, respectively. On each of these projected versions of\nqueries, keys and values we then perform the attention function in parallel, yielding $d_v$ -dimensional\noutput values. These are concatenated and once again projected, resulting in the final values, as\ndepicted in Figure 2 .",
89
+ "reading_order": 7
90
+ },
91
+ {
92
+ "label": "para",
93
+ "bbox": [
94
+ 198,
95
+ 1403,
96
+ 1065,
97
+ 1453
98
+ ],
99
+ "text": "Multi­head attention allows the model to jointly attend to information from different representation\nsubspaces at different positions. With a single attention head, averaging inhibits this.",
100
+ "reading_order": 8
101
+ },
102
+ {
103
+ "label": "fnote",
104
+ "bbox": [
105
+ 198,
106
+ 1485,
107
+ 1065,
108
+ 1535
109
+ ],
110
+ "text": "${ }^{4}$ To illustrate why the dot products get large, assume that the components of $q$ and $k$ are independent random\nvariables with mean 0 and variance 1 . Then their dot product, $q \\cdot k=\\sum_{i=1}^{d_{k}} q_{i} k_{i}$, has mean 0 and variance $d_{k}$.",
111
+ "reading_order": 9
112
+ },
113
+ {
114
+ "label": "foot",
115
+ "bbox": [
116
+ 625,
117
+ 1578,
118
+ 641,
119
+ 1599
120
+ ],
121
+ "text": "4",
122
+ "reading_order": 10
123
+ }
124
+ ]
demo/page_imgs/test_page2.jpeg ADDED

Git LFS Details

  • SHA256: 2bbda18d9f6ab0279f80718b15d66e1e444279b24a55a23b872f70a382060ac1
  • Pointer size: 131 Bytes
  • Size of remote file: 366 kB
demo/page_imgs/test_page3.jpeg ADDED

Git LFS Details

  • SHA256: f5a5beda63acd2046fc4c7f39e4aa63e70db723936d71488e5819ab106f90ec0
  • Pointer size: 131 Bytes
  • Size of remote file: 358 kB
demo_element.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
3
+ SPDX-License-Identifier: MIT
4
+ """
5
+
6
+ import argparse
7
+ import glob
8
+ import os
9
+
10
+ from omegaconf import OmegaConf
11
+ from PIL import Image
12
+
13
+ from chat import DOLPHIN
14
+ from utils.utils import *
15
+
16
+
17
+ def process_element(image_path, model, element_type, save_dir=None):
18
+ """Process a single element image (text, table, formula)
19
+
20
+ Args:
21
+ image_path: Path to the element image
22
+ model: DOLPHIN model instance
23
+ element_type: Type of element ('text', 'table', 'formula')
24
+ save_dir: Directory to save results (default: same as input directory)
25
+
26
+ Returns:
27
+ Parsed content of the element and recognition results
28
+ """
29
+ # Load and prepare image
30
+ pil_image = Image.open(image_path).convert("RGB")
31
+ pil_image = crop_margin(pil_image)
32
+
33
+ # Select appropriate prompt based on element type
34
+ if element_type == "table":
35
+ prompt = "Parse the table in the image."
36
+ label = "tab"
37
+ elif element_type == "formula":
38
+ prompt = "Read text in the image."
39
+ label = "formula"
40
+ else: # Default to text
41
+ prompt = "Read text in the image."
42
+ label = "text"
43
+
44
+ # Process the element
45
+ result = model.chat(prompt, pil_image)
46
+
47
+ # Create recognition result in the same format as the document parser
48
+ recognition_result = [
49
+ {
50
+ "label": label,
51
+ "text": result.strip(),
52
+ }
53
+ ]
54
+
55
+ # Save results if save_dir is provided
56
+ if save_dir:
57
+ save_outputs(recognition_result, image_path, save_dir)
58
+ print(f"Results saved to {save_dir}")
59
+
60
+ return result, recognition_result
61
+
62
+
63
+ def main():
64
+ parser = argparse.ArgumentParser(description="Element-level processing using DOLPHIN model")
65
+ parser.add_argument("--config", default="./config/Dolphin.yaml", help="Path to configuration file")
66
+ parser.add_argument("--input_path", type=str, required=True, help="Path to input image or directory of images")
67
+ parser.add_argument(
68
+ "--element_type",
69
+ type=str,
70
+ choices=["text", "table", "formula"],
71
+ default="text",
72
+ help="Type of element to process (text, table, formula)",
73
+ )
74
+ parser.add_argument(
75
+ "--save_dir",
76
+ type=str,
77
+ default=None,
78
+ help="Directory to save parsing results (default: same as input directory)",
79
+ )
80
+ parser.add_argument("--print_results", action="store_true", help="Print recognition results to console")
81
+ args = parser.parse_args()
82
+
83
+ # Load Model
84
+ config = OmegaConf.load(args.config)
85
+ model = DOLPHIN(config)
86
+
87
+ # Set save directory
88
+ save_dir = args.save_dir or (
89
+ args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
90
+ )
91
+ setup_output_dirs(save_dir)
92
+
93
+ # Collect Images
94
+ if os.path.isdir(args.input_path):
95
+ image_files = []
96
+ for ext in [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"]:
97
+ image_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
98
+ image_files = sorted(image_files)
99
+ else:
100
+ if not os.path.exists(args.input_path):
101
+ raise FileNotFoundError(f"Input path {args.input_path} does not exist")
102
+ image_files = [args.input_path]
103
+
104
+ total_samples = len(image_files)
105
+ print(f"\nTotal samples to process: {total_samples}")
106
+
107
+ # Process images one by one
108
+ for image_path in image_files:
109
+ print(f"\nProcessing {image_path}")
110
+ try:
111
+ result, recognition_result = process_element(
112
+ image_path=image_path,
113
+ model=model,
114
+ element_type=args.element_type,
115
+ save_dir=save_dir,
116
+ )
117
+
118
+ if args.print_results:
119
+ print("\nRecognition result:")
120
+ print(result)
121
+ print("-" * 40)
122
+
123
+ except Exception as e:
124
+ print(f"Error processing {image_path}: {str(e)}")
125
+ continue
126
+
127
+
128
+ if __name__ == "__main__":
129
+ main()
demo_element_hf.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
3
+ SPDX-License-Identifier: MIT
4
+ """
5
+
6
+ import argparse
7
+ import glob
8
+ import os
9
+
10
+ import torch
11
+ from PIL import Image
12
+ from transformers import AutoProcessor, VisionEncoderDecoderModel
13
+
14
+ from utils.utils import *
15
+
16
+
17
+ class DOLPHIN:
18
+ def __init__(self, model_id_or_path):
19
+ """Initialize the Hugging Face model
20
+
21
+ Args:
22
+ model_id_or_path: Path to local model or Hugging Face model ID
23
+ """
24
+ # Load model from local path or Hugging Face hub
25
+ self.processor = AutoProcessor.from_pretrained(model_id_or_path)
26
+ self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
27
+ self.model.eval()
28
+
29
+ # Set device and precision
30
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
31
+ self.model.to(self.device)
32
+ self.model = self.model.half() # Always use half precision by default
33
+
34
+ # set tokenizer
35
+ self.tokenizer = self.processor.tokenizer
36
+
37
+ def chat(self, prompt, image):
38
+ """Process an image with the given prompt
39
+
40
+ Args:
41
+ prompt: Text prompt to guide the model
42
+ image: PIL Image to process
43
+
44
+ Returns:
45
+ Generated text from the model
46
+ """
47
+ # Prepare image
48
+ pixel_values = self.processor(image, return_tensors="pt").pixel_values
49
+ pixel_values = pixel_values.half()
50
+
51
+ # Prepare prompt
52
+ prompt = f"<s>{prompt} <Answer/>"
53
+ prompt_ids = self.tokenizer(
54
+ prompt,
55
+ add_special_tokens=False,
56
+ return_tensors="pt"
57
+ ).input_ids.to(self.device)
58
+
59
+ decoder_attention_mask = torch.ones_like(prompt_ids)
60
+
61
+ # Generate text
62
+ outputs = self.model.generate(
63
+ pixel_values=pixel_values.to(self.device),
64
+ decoder_input_ids=prompt_ids,
65
+ decoder_attention_mask=decoder_attention_mask,
66
+ min_length=1,
67
+ max_length=4096,
68
+ pad_token_id=self.tokenizer.pad_token_id,
69
+ eos_token_id=self.tokenizer.eos_token_id,
70
+ use_cache=True,
71
+ bad_words_ids=[[self.tokenizer.unk_token_id]],
72
+ return_dict_in_generate=True,
73
+ do_sample=False,
74
+ num_beams=1,
75
+ repetition_penalty=1.1,
76
+ temperature=1.0
77
+ )
78
+
79
+ # Process the output
80
+ sequence = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
81
+ sequence = sequence.replace(prompt, "").replace("<pad>", "").replace("</s>", "").strip()
82
+
83
+ return sequence
84
+
85
+ def process_element(image_path, model, element_type, save_dir=None):
86
+ """Process a single element image (text, table, formula)
87
+
88
+ Args:
89
+ image_path: Path to the element image
90
+ model: HFModel model instance
91
+ element_type: Type of element ('text', 'table', 'formula')
92
+ save_dir: Directory to save results (default: same as input directory)
93
+
94
+ Returns:
95
+ Parsed content of the element and recognition results
96
+ """
97
+ # Load and prepare image
98
+ pil_image = Image.open(image_path).convert("RGB")
99
+ pil_image = crop_margin(pil_image)
100
+
101
+ # Select appropriate prompt based on element type
102
+ if element_type == "table":
103
+ prompt = "Parse the table in the image."
104
+ label = "tab"
105
+ elif element_type == "formula":
106
+ prompt = "Read text in the image."
107
+ label = "formula"
108
+ else: # Default to text
109
+ prompt = "Read text in the image."
110
+ label = "text"
111
+
112
+ # Process the element
113
+ result = model.chat(prompt, pil_image)
114
+
115
+ # Create recognition result in the same format as the document parser
116
+ recognition_result = [
117
+ {
118
+ "label": label,
119
+ "text": result.strip(),
120
+ }
121
+ ]
122
+
123
+ # Save results if save_dir is provided
124
+ if save_dir:
125
+ save_outputs(recognition_result, image_path, save_dir)
126
+ print(f"Results saved to {save_dir}")
127
+
128
+ return result, recognition_result
129
+
130
+
131
+ def main():
132
+ parser = argparse.ArgumentParser(description="Element-level processing using DOLPHIN model")
133
+ parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
134
+ parser.add_argument("--input_path", type=str, required=True, help="Path to input image or directory of images")
135
+ parser.add_argument(
136
+ "--element_type",
137
+ type=str,
138
+ choices=["text", "table", "formula"],
139
+ default="text",
140
+ help="Type of element to process (text, table, formula)",
141
+ )
142
+ parser.add_argument(
143
+ "--save_dir",
144
+ type=str,
145
+ default=None,
146
+ help="Directory to save parsing results (default: same as input directory)",
147
+ )
148
+ parser.add_argument("--print_results", action="store_true", help="Print recognition results to console")
149
+ args = parser.parse_args()
150
+
151
+ # Load Model
152
+ model = DOLPHIN(args.model_path)
153
+
154
+ # Set save directory
155
+ save_dir = args.save_dir or (
156
+ args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
157
+ )
158
+ setup_output_dirs(save_dir)
159
+
160
+ # Collect Images
161
+ if os.path.isdir(args.input_path):
162
+ image_files = []
163
+ for ext in [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"]:
164
+ image_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
165
+ image_files = sorted(image_files)
166
+ else:
167
+ if not os.path.exists(args.input_path):
168
+ raise FileNotFoundError(f"Input path {args.input_path} does not exist")
169
+ image_files = [args.input_path]
170
+
171
+ total_samples = len(image_files)
172
+ print(f"\nTotal samples to process: {total_samples}")
173
+
174
+ # Process images one by one
175
+ for image_path in image_files:
176
+ print(f"\nProcessing {image_path}")
177
+ try:
178
+ result, recognition_result = process_element(
179
+ image_path=image_path,
180
+ model=model,
181
+ element_type=args.element_type,
182
+ save_dir=save_dir,
183
+ )
184
+
185
+ if args.print_results:
186
+ print("\nRecognition result:")
187
+ print(result)
188
+ print("-" * 40)
189
+ except Exception as e:
190
+ print(f"Error processing {image_path}: {str(e)}")
191
+ continue
192
+
193
+
194
+ if __name__ == "__main__":
195
+ main()
demo_page.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
3
+ SPDX-License-Identifier: MIT
4
+ """
5
+
6
+ import argparse
7
+ import glob
8
+ import os
9
+
10
+ import cv2
11
+ from omegaconf import OmegaConf
12
+ from PIL import Image
13
+
14
+ from chat import DOLPHIN
15
+ from utils.utils import *
16
+
17
+
18
+ def process_document(document_path, model, save_dir, max_batch_size):
19
+ """Parse documents - Handles both images and PDFs"""
20
+ file_ext = os.path.splitext(document_path)[1].lower()
21
+
22
+ if file_ext == '.pdf':
23
+ # Process PDF file
24
+ # Convert PDF to images
25
+ images = convert_pdf_to_images(document_path)
26
+ if not images:
27
+ raise Exception(f"Failed to convert PDF {document_path} to images")
28
+
29
+ all_results = []
30
+
31
+ # Process each page
32
+ for page_idx, pil_image in enumerate(images):
33
+ print(f"Processing page {page_idx + 1}/{len(images)}")
34
+
35
+ # Generate output name for this page
36
+ base_name = os.path.splitext(os.path.basename(document_path))[0]
37
+ page_name = f"{base_name}_page_{page_idx + 1:03d}"
38
+
39
+ # Process this page (don't save individual page results)
40
+ json_path, recognition_results = process_single_image(
41
+ pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
42
+ )
43
+
44
+ # Add page information to results
45
+ page_results = {
46
+ "page_number": page_idx + 1,
47
+ "elements": recognition_results
48
+ }
49
+ all_results.append(page_results)
50
+
51
+ # Save combined results for multi-page PDF
52
+ combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
53
+
54
+ return combined_json_path, all_results
55
+
56
+ else:
57
+ # Process regular image file
58
+ pil_image = Image.open(document_path).convert("RGB")
59
+ base_name = os.path.splitext(os.path.basename(document_path))[0]
60
+ return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)
61
+
62
+
63
+ def process_single_image(image, model, save_dir, image_name, max_batch_size, save_individual=True):
64
+ """Process a single image (either from file or converted from PDF page)
65
+
66
+ Args:
67
+ image: PIL Image object
68
+ model: DOLPHIN model instance
69
+ save_dir: Directory to save results
70
+ image_name: Name for the output file
71
+ max_batch_size: Maximum batch size for processing
72
+ save_individual: Whether to save individual results (False for PDF pages)
73
+
74
+ Returns:
75
+ Tuple of (json_path, recognition_results)
76
+ """
77
+ # Stage 1: Page-level layout and reading order parsing
78
+ layout_output = model.chat("Parse the reading order of this document.", image)
79
+
80
+ # Stage 2: Element-level content parsing
81
+ padded_image, dims = prepare_image(image)
82
+ recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)
83
+
84
+ # Save outputs only if requested (skip for PDF pages)
85
+ json_path = None
86
+ if save_individual:
87
+ # Create a dummy image path for save_outputs function
88
+ dummy_image_path = f"{image_name}.jpg" # Extension doesn't matter, only basename is used
89
+ json_path = save_outputs(recognition_results, dummy_image_path, save_dir)
90
+
91
+ return json_path, recognition_results
92
+
93
+
94
+ def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
95
+ """Parse all document elements with parallel decoding"""
96
+ layout_results = parse_layout_string(layout_results)
97
+
98
+ text_table_elements = [] # Elements that need processing
99
+ figure_results = [] # Figure elements (no processing needed)
100
+ previous_box = None
101
+ reading_order = 0
102
+
103
+ # Collect elements for processing
104
+ for bbox, label in layout_results:
105
+ try:
106
+ # Adjust coordinates
107
+ x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
108
+ bbox, padded_image, dims, previous_box
109
+ )
110
+
111
+ # Crop and parse element
112
+ cropped = padded_image[y1:y2, x1:x2]
113
+ if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
114
+ if label == "fig":
115
+ pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
116
+
117
+ figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
118
+
119
+ # For figure regions, store relative path instead of base64
120
+ figure_results.append(
121
+ {
122
+ "label": label,
123
+ "text": f"![Figure](figures/{figure_filename})",
124
+ "figure_path": f"figures/{figure_filename}",
125
+ "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
126
+ "reading_order": reading_order,
127
+ }
128
+ )
129
+ else:
130
+ # For text or table regions, prepare for parsing
131
+ pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
132
+ prompt = "Parse the table in the image." if label == "tab" else "Read text in the image."
133
+ text_table_elements.append(
134
+ {
135
+ "crop": pil_crop,
136
+ "prompt": prompt,
137
+ "label": label,
138
+ "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
139
+ "reading_order": reading_order,
140
+ }
141
+ )
142
+
143
+ reading_order += 1
144
+
145
+ except Exception as e:
146
+ print(f"Error processing bbox with label {label}: {str(e)}")
147
+ continue
148
+
149
+ # Parse text/table elements in parallel
150
+ recognition_results = figure_results
151
+ if text_table_elements:
152
+ crops_list = [elem["crop"] for elem in text_table_elements]
153
+ prompts_list = [elem["prompt"] for elem in text_table_elements]
154
+
155
+ # Inference in batch
156
+ batch_results = model.chat(prompts_list, crops_list, max_batch_size=max_batch_size)
157
+
158
+ # Add batch results to recognition_results
159
+ for i, result in enumerate(batch_results):
160
+ elem = text_table_elements[i]
161
+ recognition_results.append(
162
+ {
163
+ "label": elem["label"],
164
+ "bbox": elem["bbox"],
165
+ "text": result.strip(),
166
+ "reading_order": elem["reading_order"],
167
+ }
168
+ )
169
+
170
+ # Sort elements by reading order
171
+ recognition_results.sort(key=lambda x: x.get("reading_order", 0))
172
+
173
+ return recognition_results
174
+
175
+
176
+ def main():
177
+ parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
178
+ parser.add_argument("--config", default="./config/Dolphin.yaml", help="Path to configuration file")
179
+ parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
180
+ parser.add_argument(
181
+ "--save_dir",
182
+ type=str,
183
+ default=None,
184
+ help="Directory to save parsing results (default: same as input directory)",
185
+ )
186
+ parser.add_argument(
187
+ "--max_batch_size",
188
+ type=int,
189
+ default=4,
190
+ help="Maximum number of document elements to parse in a single batch (default: 4)",
191
+ )
192
+ args = parser.parse_args()
193
+
194
+ # Load Model
195
+ config = OmegaConf.load(args.config)
196
+ model = DOLPHIN(config)
197
+
198
+ # Collect Document Files (images and PDFs)
199
+ if os.path.isdir(args.input_path):
200
+ # Support both image and PDF files
201
+ file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
202
+
203
+ document_files = []
204
+ for ext in file_extensions:
205
+ document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
206
+ document_files = sorted(document_files)
207
+ else:
208
+ if not os.path.exists(args.input_path):
209
+ raise FileNotFoundError(f"Input path {args.input_path} does not exist")
210
+
211
+ # Check if it's a supported file type
212
+ file_ext = os.path.splitext(args.input_path)[1].lower()
213
+ supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
214
+
215
+ if file_ext not in supported_exts:
216
+ raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
217
+
218
+ document_files = [args.input_path]
219
+
220
+ save_dir = args.save_dir or (
221
+ args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
222
+ )
223
+ setup_output_dirs(save_dir)
224
+
225
+ total_samples = len(document_files)
226
+ print(f"\nTotal files to process: {total_samples}")
227
+
228
+ # Process All Document Files
229
+ for file_path in document_files:
230
+ print(f"\nProcessing {file_path}")
231
+ try:
232
+ json_path, recognition_results = process_document(
233
+ document_path=file_path,
234
+ model=model,
235
+ save_dir=save_dir,
236
+ max_batch_size=args.max_batch_size,
237
+ )
238
+
239
+ print(f"Processing completed. Results saved to {save_dir}")
240
+
241
+ except Exception as e:
242
+ print(f"Error processing {file_path}: {str(e)}")
243
+ continue
244
+
245
+
246
+ if __name__ == "__main__":
247
+ main()
demo_page_hf.py ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
3
+ SPDX-License-Identifier: MIT
4
+ """
5
+
6
+ import argparse
7
+ import glob
8
+ import os
9
+
10
+ import cv2
11
+ import torch
12
+ from PIL import Image
13
+ from transformers import AutoProcessor, VisionEncoderDecoderModel
14
+
15
+ from utils.utils import *
16
+
17
+
18
+ class DOLPHIN:
19
+ def __init__(self, model_id_or_path):
20
+ """Initialize the Hugging Face model
21
+
22
+ Args:
23
+ model_id_or_path: Path to local model or Hugging Face model ID
24
+ """
25
+ # Load model from local path or Hugging Face hub
26
+ self.processor = AutoProcessor.from_pretrained(model_id_or_path)
27
+ self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
28
+ self.model.eval()
29
+
30
+ # Set device and precision
31
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
32
+ self.model.to(self.device)
33
+ self.model = self.model.half() # Always use half precision by default
34
+
35
+ # set tokenizer
36
+ self.tokenizer = self.processor.tokenizer
37
+
38
+ def chat(self, prompt, image):
39
+ """Process an image or batch of images with the given prompt(s)
40
+
41
+ Args:
42
+ prompt: Text prompt or list of prompts to guide the model
43
+ image: PIL Image or list of PIL Images to process
44
+
45
+ Returns:
46
+ Generated text or list of texts from the model
47
+ """
48
+ # Check if we're dealing with a batch
49
+ is_batch = isinstance(image, list)
50
+
51
+ if not is_batch:
52
+ # Single image, wrap it in a list for consistent processing
53
+ images = [image]
54
+ prompts = [prompt]
55
+ else:
56
+ # Batch of images
57
+ images = image
58
+ prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
59
+
60
+ # Prepare image
61
+ batch_inputs = self.processor(images, return_tensors="pt", padding=True)
62
+ batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
63
+
64
+ # Prepare prompt
65
+ prompts = [f"<s>{p} <Answer/>" for p in prompts]
66
+ batch_prompt_inputs = self.tokenizer(
67
+ prompts,
68
+ add_special_tokens=False,
69
+ return_tensors="pt"
70
+ )
71
+
72
+ batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
73
+ batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
74
+
75
+ # Generate text
76
+ outputs = self.model.generate(
77
+ pixel_values=batch_pixel_values,
78
+ decoder_input_ids=batch_prompt_ids,
79
+ decoder_attention_mask=batch_attention_mask,
80
+ min_length=1,
81
+ max_length=4096,
82
+ pad_token_id=self.tokenizer.pad_token_id,
83
+ eos_token_id=self.tokenizer.eos_token_id,
84
+ use_cache=True,
85
+ bad_words_ids=[[self.tokenizer.unk_token_id]],
86
+ return_dict_in_generate=True,
87
+ do_sample=False,
88
+ num_beams=1,
89
+ repetition_penalty=1.1,
90
+ temperature=1.0
91
+ )
92
+
93
+ # Process output
94
+ sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
95
+
96
+ # Clean prompt text from output
97
+ results = []
98
+ for i, sequence in enumerate(sequences):
99
+ cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
100
+ results.append(cleaned)
101
+
102
+ # Return a single result for single image input
103
+ if not is_batch:
104
+ return results[0]
105
+ return results
106
+
107
+
108
+ def process_document(document_path, model, save_dir, max_batch_size=None):
109
+ """Parse documents with two stages - Handles both images and PDFs"""
110
+ file_ext = os.path.splitext(document_path)[1].lower()
111
+
112
+ if file_ext == '.pdf':
113
+ # Process PDF file
114
+ # Convert PDF to images
115
+ images = convert_pdf_to_images(document_path)
116
+ if not images:
117
+ raise Exception(f"Failed to convert PDF {document_path} to images")
118
+
119
+ all_results = []
120
+
121
+ # Process each page
122
+ for page_idx, pil_image in enumerate(images):
123
+ print(f"Processing page {page_idx + 1}/{len(images)}")
124
+
125
+ # Generate output name for this page
126
+ base_name = os.path.splitext(os.path.basename(document_path))[0]
127
+ page_name = f"{base_name}_page_{page_idx + 1:03d}"
128
+
129
+ # Process this page (don't save individual page results)
130
+ json_path, recognition_results = process_single_image(
131
+ pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
132
+ )
133
+
134
+ # Add page information to results
135
+ page_results = {
136
+ "page_number": page_idx + 1,
137
+ "elements": recognition_results
138
+ }
139
+ all_results.append(page_results)
140
+
141
+ # Save combined results for multi-page PDF
142
+ combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
143
+
144
+ return combined_json_path, all_results
145
+
146
+ else:
147
+ # Process regular image file
148
+ pil_image = Image.open(document_path).convert("RGB")
149
+ base_name = os.path.splitext(os.path.basename(document_path))[0]
150
+ return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)
151
+
152
+
153
+ def process_single_image(image, model, save_dir, image_name, max_batch_size=None, save_individual=True):
154
+ """Process a single image (either from file or converted from PDF page)
155
+
156
+ Args:
157
+ image: PIL Image object
158
+ model: DOLPHIN model instance
159
+ save_dir: Directory to save results
160
+ image_name: Name for the output file
161
+ max_batch_size: Maximum batch size for processing
162
+ save_individual: Whether to save individual results (False for PDF pages)
163
+
164
+ Returns:
165
+ Tuple of (json_path, recognition_results)
166
+ """
167
+ # Stage 1: Page-level layout and reading order parsing
168
+ layout_output = model.chat("Parse the reading order of this document.", image)
169
+
170
+ # Stage 2: Element-level content parsing
171
+ padded_image, dims = prepare_image(image)
172
+ recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)
173
+
174
+ # Save outputs only if requested (skip for PDF pages)
175
+ json_path = None
176
+ if save_individual:
177
+ # Create a dummy image path for save_outputs function
178
+ dummy_image_path = f"{image_name}.jpg" # Extension doesn't matter, only basename is used
179
+ json_path = save_outputs(recognition_results, dummy_image_path, save_dir)
180
+
181
+ return json_path, recognition_results
182
+
183
+
184
+ def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
185
+ """Parse all document elements with parallel decoding"""
186
+ layout_results = parse_layout_string(layout_results)
187
+
188
+ # Store text and table elements separately
189
+ text_elements = [] # Text elements
190
+ table_elements = [] # Table elements
191
+ figure_results = [] # Image elements (no processing needed)
192
+ previous_box = None
193
+ reading_order = 0
194
+
195
+ # Collect elements to process and group by type
196
+ for bbox, label in layout_results:
197
+ try:
198
+ # Adjust coordinates
199
+ x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
200
+ bbox, padded_image, dims, previous_box
201
+ )
202
+
203
+ # Crop and parse element
204
+ cropped = padded_image[y1:y2, x1:x2]
205
+ if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
206
+ if label == "fig":
207
+ pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
208
+
209
+ figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
210
+
211
+ # For figure regions, store relative path instead of base64
212
+ figure_results.append(
213
+ {
214
+ "label": label,
215
+ "text": f"![Figure](figures/{figure_filename})",
216
+ "figure_path": f"figures/{figure_filename}",
217
+ "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
218
+ "reading_order": reading_order,
219
+ }
220
+ )
221
+ else:
222
+ # Prepare element for parsing
223
+ pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
224
+ element_info = {
225
+ "crop": pil_crop,
226
+ "label": label,
227
+ "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
228
+ "reading_order": reading_order,
229
+ }
230
+
231
+ # Group by type
232
+ if label == "tab":
233
+ table_elements.append(element_info)
234
+ else: # Text elements
235
+ text_elements.append(element_info)
236
+
237
+ reading_order += 1
238
+
239
+ except Exception as e:
240
+ print(f"Error processing bbox with label {label}: {str(e)}")
241
+ continue
242
+
243
+ # Initialize results list
244
+ recognition_results = figure_results.copy()
245
+
246
+ # Process text elements (in batches)
247
+ if text_elements:
248
+ text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
249
+ recognition_results.extend(text_results)
250
+
251
+ # Process table elements (in batches)
252
+ if table_elements:
253
+ table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
254
+ recognition_results.extend(table_results)
255
+
256
+ # Sort elements by reading order
257
+ recognition_results.sort(key=lambda x: x.get("reading_order", 0))
258
+
259
+ return recognition_results
260
+
261
+
262
+ def process_element_batch(elements, model, prompt, max_batch_size=None):
263
+ """Process elements of the same type in batches"""
264
+ results = []
265
+
266
+ # Determine batch size
267
+ batch_size = len(elements)
268
+ if max_batch_size is not None and max_batch_size > 0:
269
+ batch_size = min(batch_size, max_batch_size)
270
+
271
+ # Process in batches
272
+ for i in range(0, len(elements), batch_size):
273
+ batch_elements = elements[i:i+batch_size]
274
+ crops_list = [elem["crop"] for elem in batch_elements]
275
+
276
+ # Use the same prompt for all elements in the batch
277
+ prompts_list = [prompt] * len(crops_list)
278
+
279
+ # Batch inference
280
+ batch_results = model.chat(prompts_list, crops_list)
281
+
282
+ # Add results
283
+ for j, result in enumerate(batch_results):
284
+ elem = batch_elements[j]
285
+ results.append({
286
+ "label": elem["label"],
287
+ "bbox": elem["bbox"],
288
+ "text": result.strip(),
289
+ "reading_order": elem["reading_order"],
290
+ })
291
+
292
+ return results
293
+
294
+
295
+ def main():
296
+ parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
297
+ parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
298
+ parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
299
+ parser.add_argument(
300
+ "--save_dir",
301
+ type=str,
302
+ default=None,
303
+ help="Directory to save parsing results (default: same as input directory)",
304
+ )
305
+ parser.add_argument(
306
+ "--max_batch_size",
307
+ type=int,
308
+ default=16,
309
+ help="Maximum number of document elements to parse in a single batch (default: 16)",
310
+ )
311
+ args = parser.parse_args()
312
+
313
+ # Load Model
314
+ model = DOLPHIN(args.model_path)
315
+
316
+ # Collect Document Files (images and PDFs)
317
+ if os.path.isdir(args.input_path):
318
+ # Support both image and PDF files
319
+ file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
320
+
321
+ document_files = []
322
+ for ext in file_extensions:
323
+ document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
324
+ document_files = sorted(document_files)
325
+ else:
326
+ if not os.path.exists(args.input_path):
327
+ raise FileNotFoundError(f"Input path {args.input_path} does not exist")
328
+
329
+ # Check if it's a supported file type
330
+ file_ext = os.path.splitext(args.input_path)[1].lower()
331
+ supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
332
+
333
+ if file_ext not in supported_exts:
334
+ raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
335
+
336
+ document_files = [args.input_path]
337
+
338
+ save_dir = args.save_dir or (
339
+ args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
340
+ )
341
+ setup_output_dirs(save_dir)
342
+
343
+ total_samples = len(document_files)
344
+ print(f"\nTotal files to process: {total_samples}")
345
+
346
+ # Process All Document Files
347
+ for file_path in document_files:
348
+ print(f"\nProcessing {file_path}")
349
+ try:
350
+ json_path, recognition_results = process_document(
351
+ document_path=file_path,
352
+ model=model,
353
+ save_dir=save_dir,
354
+ max_batch_size=args.max_batch_size,
355
+ )
356
+
357
+ print(f"Processing completed. Results saved to {save_dir}")
358
+
359
+ except Exception as e:
360
+ print(f"Error processing {file_path}: {str(e)}")
361
+ continue
362
+
363
+
364
+ if __name__ == "__main__":
365
+ main()
deployment/ReadMe.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1 align="center">
2
+ 🚀 Dolphin Inference/Serving
3
+ </h1>
4
+
5
+ ## vLLM
6
+ > [Doc](./vllm/ReadMe.md)
7
+
8
+ ## TensorRT-LLM
9
+ > [Doc](./tensorrt_llm/ReadMe.md)
10
+
11
+ ## Others
12
+
deployment/tensorrt_llm/ReadMe.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1 align="center">
2
+ 🚀 Dolphin TensorRT-LLM Demo
3
+ </h1>
4
+
5
+ ## ✅ Introduction
6
+ The Dolphin model employs a **Swin Encoder + MBart Decoder** architecture. In the HuggingFace Transformers [Config](https://huggingface.co/ByteDance/Dolphin/blob/main/config.json),
7
+ its architectures field is specified as "VisionEncoderDecoderModel". **Dolphin**, **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)**, and **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** share the same model architecture. TensorRT-LLM has already supported the Nougat model.
8
+ Following Nougat's conversion script, we have successfully implemented Dolphin on TensorRT-LLM.
9
+
10
+ **Note:** [prompt_ids](./dolphin_runner.py#L120) MUST be of **int32** type, otherwise TensorRT-LLM will produce incorrect results.
11
+
12
+ ## 🛠️ Installation
13
+ > We only test TensorRT-LLM 0.18.1 on Linux.
14
+
15
+ https://nvidia.github.io/TensorRT-LLM/0.18.1/installation/linux.html
16
+
17
+
18
+ ## ⚡ Offline Inference
19
+ ```
20
+ export MODEL_NAME="Dolphin"
21
+
22
+ # predict elements reading order
23
+ python run_dolphin.py \
24
+ --batch_size 1 \
25
+ --hf_model_dir tmp/hf_models/${MODEL_NAME} \
26
+ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \
27
+ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \
28
+ --max_new_tokens 4096 \
29
+ --repetition_penalty 1.0 \
30
+ --input_text "Parse the reading order of this document." \
31
+ --image_path "../../demo/page_imgs/page_1.jpeg"
32
+
33
+ # recognize text/latex
34
+ python run_dolphin.py \
35
+ --batch_size 1 \
36
+ --hf_model_dir tmp/hf_models/${MODEL_NAME} \
37
+ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \
38
+ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \
39
+ --max_new_tokens 4096 \
40
+ --repetition_penalty 1.0 \
41
+ --input_text "Read text in the image." \
42
+ --image_path "../../demo/element_imgs/block_formula.jpeg"
43
+
44
+
45
+ python run_dolphin.py \
46
+ --batch_size 1 \
47
+ --hf_model_dir tmp/hf_models/${MODEL_NAME} \
48
+ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \
49
+ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \
50
+ --max_new_tokens 4096 \
51
+ --repetition_penalty 1.0 \
52
+ --input_text "Read text in the image." \
53
+ --image_path "../../demo/element_imgs/para_1.jpg"
54
+
55
+ # recognize table
56
+ python run_dolphin.py \
57
+ --batch_size 1 \
58
+ --hf_model_dir tmp/hf_models/${MODEL_NAME} \
59
+ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \
60
+ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \
61
+ --max_new_tokens 4096 \
62
+ --repetition_penalty 1.0 \
63
+ --input_text "Parse the table in the image." \
64
+ --image_path "../../demo/element_imgs/table_1.jpeg"
65
+ ```
66
+
67
+
68
+ ## ⚡ Online Inference
69
+ ```
70
+ # 1. Start Api Server
71
+ export MODEL_NAME="Dolphin"
72
+
73
+ python api_server.py \
74
+ --hf_model_dir tmp/hf_models/${MODEL_NAME} \
75
+ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \
76
+ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \
77
+ --max_batch_size 16
78
+
79
+ # 2. Predict
80
+ # predict elements reading order
81
+ python deployment/tensorrt_llm/api_client.py --image_path ./demo/page_imgs/page_1.jpeg --prompt "Parse the reading order of this document."
82
+
83
+ # recognize text/latex
84
+ python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/block_formula.jpeg --prompt "Read text in the image."
85
+ python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/para_1.jpg --prompt "Read text in the image."
86
+
87
+ # recognize table
88
+ python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/table_1.jpeg --prompt "Parse the table in the image."
89
+ ```
deployment/tensorrt_llm/api_client.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Example Python client for `vllm.entrypoints.api_server`
4
+ Start the demo server:
5
+ python -m vllm.entrypoints.api_server --model <model_name>
6
+
7
+ NOTE: The API server is used only for demonstration and simple performance
8
+ benchmarks. It is not intended for production use.
9
+ For production use, we recommend `vllm serve` and the OpenAI client API.
10
+ """
11
+
12
+ import argparse
13
+ import base64
14
+ import json
15
+ from argparse import Namespace
16
+ from collections.abc import Iterable
17
+
18
+ import requests
19
+
20
+
21
+ def clear_line(n: int = 1) -> None:
22
+ LINE_UP = "\033[1A"
23
+ LINE_CLEAR = "\x1b[2K"
24
+ for _ in range(n):
25
+ print(LINE_UP, end=LINE_CLEAR, flush=True)
26
+
27
+
28
+ def encode_image_base64(image_path: str) -> str:
29
+ """Encode local image to base64 format."""
30
+
31
+ with open(image_path, "rb") as f:
32
+ image_data = f.read()
33
+ result = base64.b64encode(image_data).decode("utf-8")
34
+
35
+ return result
36
+
37
+
38
+ def post_http_request(
39
+ prompt: str, image_path: str, api_url: str, stream: bool = False
40
+ ) -> requests.Response:
41
+ headers = {"User-Agent": "Test Client"}
42
+ pload = {
43
+ "prompt": prompt,
44
+ "image_base64": encode_image_base64(image_path),
45
+ }
46
+ response = requests.post(api_url, headers=headers, json=pload, stream=stream)
47
+ return response
48
+
49
+
50
+ def get_streaming_response(response: requests.Response) -> Iterable[list[str]]:
51
+ for chunk in response.iter_lines(
52
+ chunk_size=8192, decode_unicode=False, delimiter=b"\n"
53
+ ):
54
+ if chunk:
55
+ data = json.loads(chunk.decode("utf-8"))
56
+ output = data["text"]
57
+ yield output
58
+
59
+
60
+ def get_response(response: requests.Response) -> list[str]:
61
+ data = json.loads(response.content)
62
+ output = data["text"]
63
+ return output
64
+
65
+
66
+ def parse_args():
67
+ parser = argparse.ArgumentParser()
68
+ parser.add_argument("--host", type=str, default="localhost")
69
+ parser.add_argument("--port", type=int, default=8000)
70
+ parser.add_argument("--prompt", type=str, default="Parse the reading order of this document.")
71
+ parser.add_argument("--image_path", type=str, default="./demo/page_imgs/page_1.jpeg")
72
+ parser.add_argument("--stream", action="store_true")
73
+ return parser.parse_args()
74
+
75
+
76
+ def main(args: Namespace):
77
+ prompt = args.prompt
78
+ image_path = args.image_path
79
+ api_url = f"http://{args.host}:{args.port}/generate"
80
+ stream = args.stream
81
+
82
+ print(f"Prompt: {prompt!r}\n", flush=True)
83
+ response = post_http_request(prompt, image_path, api_url, stream)
84
+
85
+ if stream:
86
+ num_printed_lines = 0
87
+ for h in get_streaming_response(response):
88
+ clear_line(num_printed_lines)
89
+ num_printed_lines = 0
90
+ for i, line in enumerate(h):
91
+ num_printed_lines += 1
92
+ print(f"Response {i}: {line!r}", flush=True)
93
+ else:
94
+ output = get_response(response)
95
+ print(f"Response: {output!r}", flush=True)
96
+
97
+
98
+ if __name__ == "__main__":
99
+ args = parse_args()
100
+ main(args)
deployment/tensorrt_llm/api_server.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # copied from: https://github.com/NVIDIA/TensorRT-LLM/blob/v0.18.1/examples/apps/fastapi_server.py
2
+
3
+ #!/usr/bin/env python
4
+ import asyncio
5
+ import base64
6
+ import io
7
+ import logging
8
+ import signal
9
+ from http import HTTPStatus
10
+ from PIL import Image
11
+ from typing import Optional
12
+
13
+ import click
14
+ import uvicorn
15
+ from fastapi import FastAPI, Request
16
+ from fastapi.responses import JSONResponse, Response
17
+
18
+ from tensorrt_llm.executor import CppExecutorError, RequestError
19
+ from dolphin_runner import DolphinRunner, InferenceConfig
20
+
21
+ TIMEOUT_KEEP_ALIVE = 5 # seconds.
22
+
23
+
24
+ async def decode_image(image_base64: str) -> Image.Image:
25
+ image_data = base64.b64decode(image_base64)
26
+ image = Image.open(io.BytesIO(image_data))
27
+ return image
28
+
29
+
30
+ class LlmServer:
31
+ def __init__(self, runner: DolphinRunner):
32
+ self.runner = runner
33
+ self.app = FastAPI()
34
+ self.register_routes()
35
+
36
+ def register_routes(self):
37
+ self.app.add_api_route("/health", self.health, methods=["GET"])
38
+ self.app.add_api_route("/generate", self.generate, methods=["POST"])
39
+
40
+ async def health(self) -> Response:
41
+ return Response(status_code=200)
42
+
43
+ async def generate(self, request: Request) -> Response:
44
+ """ Generate completion for the request.
45
+
46
+ The request should be a JSON object with the following fields:
47
+ - prompt: the prompt to use for the generation.
48
+ - image_base64: the image to use for the generation.
49
+ """
50
+ request_dict = await request.json()
51
+
52
+ prompt = request_dict.pop("prompt", "")
53
+ logging.info(f"request prompt: {prompt}")
54
+ image_base64 = request_dict.pop("image_base64", "")
55
+ image = await decode_image(image_base64)
56
+
57
+ try:
58
+ output_texts = self.runner.run([prompt], [image], 4024)
59
+ output_texts = [texts[0] for texts in output_texts]
60
+ return JSONResponse({"text": output_texts[0]})
61
+ except RequestError as e:
62
+ return JSONResponse(content=str(e),
63
+ status_code=HTTPStatus.BAD_REQUEST)
64
+ except CppExecutorError:
65
+ # If internal executor error is raised, shutdown the server
66
+ signal.raise_signal(signal.SIGINT)
67
+
68
+ async def __call__(self, host, port):
69
+ config = uvicorn.Config(self.app,
70
+ host=host,
71
+ port=port,
72
+ log_level="info",
73
+ timeout_keep_alive=TIMEOUT_KEEP_ALIVE)
74
+ await uvicorn.Server(config).serve()
75
+
76
+
77
+ @click.command()
78
+ @click.option("--hf_model_dir", type=str, required=True)
79
+ @click.option("--visual_engine_dir", type=str, required=True)
80
+ @click.option("--llm_engine_dir", type=str, required=True)
81
+ @click.option("--max_batch_size", type=int, default=16)
82
+ @click.option("--max_new_tokens", type=int, default=4024)
83
+ @click.option("--host", type=str, default=None)
84
+ @click.option("--port", type=int, default=8000)
85
+ def entrypoint(hf_model_dir: str,
86
+ visual_engine_dir: str,
87
+ llm_engine_dir: str,
88
+ max_batch_size: int,
89
+ max_new_tokens: int,
90
+ host: Optional[str] = None,
91
+ port: int = 8000):
92
+ host = host or "0.0.0.0"
93
+ port = port or 8000
94
+ logging.info(f"Starting server at {host}:{port}")
95
+
96
+ config = InferenceConfig(
97
+ max_new_tokens=max_new_tokens,
98
+ batch_size=max_batch_size,
99
+ log_level="info",
100
+ hf_model_dir=hf_model_dir,
101
+ visual_engine_dir=visual_engine_dir,
102
+ llm_engine_dir=llm_engine_dir,
103
+ )
104
+
105
+ dolphin_runner = DolphinRunner(config)
106
+ server = LlmServer(runner=dolphin_runner)
107
+
108
+ asyncio.run(server(host, port))
109
+
110
+
111
+ if __name__ == "__main__":
112
+ entrypoint()
deployment/tensorrt_llm/convert/__init__.py ADDED
File without changes