Spaces:
Running
Running
File size: 24,773 Bytes
4e933f3 be1c5c4 a407706 a1769da a407706 be1c5c4 a407706 02d23e2 e04dc80 be1c5c4 a407706 a1769da be1c5c4 e04dc80 a407706 e04dc80 a1769da e04dc80 a1769da e04dc80 a407706 02d23e2 e04dc80 a407706 a1769da a407706 a1769da a407706 a1769da a407706 a1769da a407706 02d23e2 a1769da a407706 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a407706 a1769da a407706 4135159 a407706 4135159 a1769da 4135159 a407706 a1769da a407706 a1769da a407706 e04dc80 a1769da a407706 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a1769da 02d23e2 a1769da 02d23e2 e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a407706 e04dc80 a407706 a1769da a407706 a1769da a407706 e04dc80 a1769da e04dc80 a407706 a1769da e04dc80 a407706 a1769da e04dc80 a407706 e04dc80 a1769da e04dc80 a407706 a1769da e04dc80 02d23e2 e04dc80 a1769da e04dc80 a1769da e04dc80 a407706 e04dc80 a1769da e04dc80 a1769da e04dc80 a1769da e04dc80 a407706 a1769da e04dc80 a407706 a1769da e04dc80 a407706 e04dc80 a407706 e04dc80 a407706 a1769da a407706 c6792e2 a1769da c6792e2 a1769da c6792e2 a1769da c6792e2 be1c5c4 ad9d517 a407706 e04dc80 a407706 a1769da e04dc80 a407706 a1769da 02d23e2 e04dc80 02d23e2 a1769da a407706 e04dc80 a1769da e04dc80 02d23e2 a1769da 02d23e2 a1769da e04dc80 a1769da e04dc80 02d23e2 e04dc80 02d23e2 a407706 e04dc80 a407706 a1769da a407706 be1c5c4 a1769da a407706 ad9d517 a1769da ad9d517 e04dc80 ad9d517 a1769da a407706 a1769da a407706 a1769da a407706 a1769da a407706 f3d6f52 a1769da e04dc80 4e933f3 a1769da e04dc80 a1769da a407706 39dacf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import gradio as gr
import json
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import os
from typing import List, Dict, Any
import time
import requests
import re
import math
from collections import defaultdict, Counter
# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
class HybridSearchRAGBot:
def __init__(self):
self.embedder = None
self.knowledge_base = []
self.embeddings = []
# BM25 components
self.term_frequencies = {} # doc_id -> {term: frequency}
self.document_frequency = {} # term -> number of docs containing term
self.document_lengths = {} # doc_id -> document length
self.average_doc_length = 0
self.total_documents = 0
# BM25 parameters
self.k1 = 1.5 # Controls term frequency saturation
self.b = 0.75 # Controls document length normalization
self.initialize_models()
self.load_markdown_knowledge_base()
self.build_bm25_index()
def initialize_models(self):
"""Initialize the embedding model"""
try:
print("Loading embedding model...")
self.embedder = pipeline(
'feature-extraction',
'sentence-transformers/all-MiniLM-L6-v2',
device=0 if device == "cuda" else -1
)
print("β
Embedding model loaded successfully")
except Exception as e:
print(f"β Error loading embedding model: {e}")
raise e
def load_markdown_knowledge_base(self):
"""Load knowledge base from markdown files"""
print("Loading knowledge base from markdown files...")
# Reset knowledge base
self.knowledge_base = []
# Load all markdown files
markdown_files = [
'about.md',
'research_details.md',
'publications_detailed.md',
'skills_expertise.md',
'experience_detailed.md',
'statistics.md'
]
for filename in markdown_files:
try:
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
self.process_markdown_file(content, filename)
print(f"β
Loaded {filename}")
else:
print(f"β οΈ File not found: {filename}")
except Exception as e:
print(f"β Error loading {filename}: {e}")
# Generate embeddings for knowledge base
print("Generating embeddings for knowledge base...")
self.embeddings = []
for i, doc in enumerate(self.knowledge_base):
try:
# Truncate content to avoid token limit issues
content = doc["content"][:500] # Limit to 500 characters
embedding = self.embedder(content, return_tensors="pt")
# Convert to numpy and flatten
embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
self.embeddings.append(embedding_np)
except Exception as e:
print(f"Error generating embedding for doc {doc['id']}: {e}")
# Fallback to zero embedding
self.embeddings.append(np.zeros(384))
self.total_documents = len(self.knowledge_base)
print(f"β
Knowledge base loaded with {len(self.knowledge_base)} documents")
def process_markdown_file(self, content: str, filename: str):
"""Process a markdown file and extract sections"""
# Determine file type and priority
file_type_map = {
'about.md': ('about', 10),
'research_details.md': ('research', 9),
'publications_detailed.md': ('publications', 8),
'skills_expertise.md': ('skills', 7),
'experience_detailed.md': ('experience', 8),
'statistics.md': ('statistics', 9)
}
file_type, priority = file_type_map.get(filename, ('general', 5))
# Split content into sections
sections = self.split_markdown_into_sections(content)
for section in sections:
if len(section['content'].strip()) > 100: # Only process substantial content
doc = {
"id": f"{filename}_{section['title']}_{len(self.knowledge_base)}",
"content": section['content'],
"metadata": {
"type": file_type,
"priority": priority,
"section": section['title'],
"source": filename
}
}
self.knowledge_base.append(doc)
def split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
"""Split markdown content into sections based on headers"""
sections = []
lines = content.split('\n')
current_section = {'title': 'Introduction', 'content': ''}
for line in lines:
# Check if line is a header
if line.startswith('#'):
# Save previous section if it has content
if current_section['content'].strip():
sections.append(current_section.copy())
# Start new section
header_level = len(line) - len(line.lstrip('#'))
title = line.lstrip('#').strip()
current_section = {
'title': title,
'content': line + '\n'
}
else:
current_section['content'] += line + '\n'
# Add the last section
if current_section['content'].strip():
sections.append(current_section)
return sections
def tokenize(self, text: str) -> List[str]:
"""Tokenize text for BM25"""
# Convert to lowercase and remove punctuation
text = re.sub(r'[^\w\s]', ' ', text.lower())
# Split into words and filter out short words and stop words
words = [word for word in text.split() if len(word) > 2 and not self.is_stop_word(word)]
return words
def is_stop_word(self, word: str) -> bool:
"""Check if word is a stop word"""
stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
'will', 'would', 'could', 'should', 'may', 'might', 'can', 'this', 'that', 'these', 'those',
'from', 'up', 'out', 'down', 'off', 'over', 'under', 'again', 'further', 'then', 'once'
}
return word in stop_words
def build_bm25_index(self):
"""Build BM25 index for all documents"""
print("Building BM25 index...")
# Reset indexes
self.term_frequencies = {}
self.document_frequency = defaultdict(int)
self.document_lengths = {}
total_length = 0
# First pass: calculate term frequencies and document lengths
for doc in self.knowledge_base:
doc_id = doc['id']
terms = self.tokenize(doc['content'])
# Calculate term frequencies for this document
term_freq = Counter(terms)
self.term_frequencies[doc_id] = dict(term_freq)
# Store document length
doc_length = len(terms)
self.document_lengths[doc_id] = doc_length
total_length += doc_length
# Update document frequencies
unique_terms = set(terms)
for term in unique_terms:
self.document_frequency[term] += 1
# Calculate average document length
self.average_doc_length = total_length / self.total_documents if self.total_documents > 0 else 0
print(f"β
BM25 index built: {len(self.document_frequency)} unique terms, avg doc length: {self.average_doc_length:.1f}")
def calculate_bm25_score(self, term: str, doc_id: str) -> float:
"""Calculate BM25 score for a term in a document"""
# Get term frequency in document
tf = self.term_frequencies.get(doc_id, {}).get(term, 0)
if tf == 0:
return 0.0
# Get document frequency and document length
df = self.document_frequency.get(term, 1)
doc_length = self.document_lengths.get(doc_id, 0)
# Calculate IDF: log((N - df + 0.5) / (df + 0.5))
idf = math.log((self.total_documents - df + 0.5) / (df + 0.5))
# Calculate BM25 score
numerator = tf * (self.k1 + 1)
denominator = tf + self.k1 * (1 - self.b + self.b * (doc_length / self.average_doc_length))
return idf * (numerator / denominator)
def bm25_search(self, query: str, top_k: int = 10) -> List[Dict]:
"""Perform BM25 search"""
query_terms = self.tokenize(query)
if not query_terms:
return []
scores = {}
# Calculate BM25 score for each document
for doc in self.knowledge_base:
doc_id = doc['id']
score = 0.0
for term in query_terms:
score += self.calculate_bm25_score(term, doc_id)
if score > 0:
# Apply priority boost
priority_boost = 1 + (doc['metadata']['priority'] / 50)
final_score = score * priority_boost
scores[doc_id] = {
'document': doc,
'score': final_score,
'search_type': 'bm25'
}
# Sort by score and return top_k
sorted_results = sorted(scores.values(), key=lambda x: x['score'], reverse=True)
return sorted_results[:top_k]
def cosine_similarity(self, a, b):
"""Calculate cosine similarity between two vectors"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def vector_search(self, query: str, top_k: int = 10) -> List[Dict]:
"""Perform vector similarity search"""
try:
# Generate query embedding
query_embedding = self.embedder(query[:500], return_tensors="pt") # Truncate query
query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
# Calculate similarities
similarities = []
for i, doc_embedding in enumerate(self.embeddings):
if doc_embedding is not None and len(doc_embedding) > 0:
similarity = self.cosine_similarity(query_vector, doc_embedding)
# Apply priority boost
priority_boost = 1 + (self.knowledge_base[i]['metadata']['priority'] / 100)
final_score = similarity * priority_boost
similarities.append({
'document': self.knowledge_base[i],
'score': float(final_score),
'search_type': 'vector'
})
# Sort by similarity and return top_k
similarities.sort(key=lambda x: x['score'], reverse=True)
return similarities[:top_k]
except Exception as e:
print(f"Error in vector search: {e}")
return []
def hybrid_search(self, query: str, top_k: int = 10, vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict]:
"""Perform hybrid search combining vector and BM25 results"""
try:
# Get results from both search methods
vector_results = self.vector_search(query, top_k * 2) # Get more results for better fusion
bm25_results = self.bm25_search(query, top_k * 2)
# Normalize scores to [0, 1] range
if vector_results:
max_vector_score = max(r['score'] for r in vector_results)
if max_vector_score > 0:
for result in vector_results:
result['normalized_score'] = result['score'] / max_vector_score
else:
for result in vector_results:
result['normalized_score'] = 0
if bm25_results:
max_bm25_score = max(r['score'] for r in bm25_results)
if max_bm25_score > 0:
for result in bm25_results:
result['normalized_score'] = result['score'] / max_bm25_score
else:
for result in bm25_results:
result['normalized_score'] = 0
# Combine results
combined_scores = {}
# Add vector results
for result in vector_results:
doc_id = result['document']['id']
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': result['normalized_score'],
'bm25_score': 0.0,
'search_type': 'vector'
}
# Add BM25 results
for result in bm25_results:
doc_id = result['document']['id']
if doc_id in combined_scores:
combined_scores[doc_id]['bm25_score'] = result['normalized_score']
combined_scores[doc_id]['search_type'] = 'hybrid'
else:
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': 0.0,
'bm25_score': result['normalized_score'],
'search_type': 'bm25'
}
# Calculate final hybrid scores
final_results = []
for doc_id, data in combined_scores.items():
hybrid_score = (vector_weight * data['vector_score']) + (bm25_weight * data['bm25_score'])
final_results.append({
'document': data['document'],
'score': hybrid_score,
'vector_score': data['vector_score'],
'bm25_score': data['bm25_score'],
'search_type': data['search_type']
})
# Sort by hybrid score and return top_k
final_results.sort(key=lambda x: x['score'], reverse=True)
return final_results[:top_k]
except Exception as e:
print(f"Error in hybrid search: {e}")
# Fallback to vector search only
return self.vector_search(query, top_k)
def search_knowledge_base(self, query: str, top_k: int = 5, search_type: str = "hybrid") -> List[Dict]:
"""Search the knowledge base using specified method"""
if search_type == "vector":
return self.vector_search(query, top_k)
elif search_type == "bm25":
return self.bm25_search(query, top_k)
else: # hybrid
return self.hybrid_search(query, top_k)
# Initialize the bot
print("Initializing Hybrid Search RAGtim Bot...")
bot = HybridSearchRAGBot()
# API Functions for Gradio Client
def search_api(query: str, top_k: int = 5, search_type: str = "hybrid", vector_weight: float = 0.6, bm25_weight: float = 0.4):
"""API endpoint for hybrid search functionality"""
try:
if search_type == "hybrid":
results = bot.hybrid_search(query, top_k, vector_weight, bm25_weight)
else:
results = bot.search_knowledge_base(query, top_k, search_type)
return {
"results": results,
"query": query,
"top_k": top_k,
"search_type": search_type,
"total_documents": len(bot.knowledge_base),
"search_parameters": {
"vector_weight": vector_weight if search_type == "hybrid" else None,
"bm25_weight": bm25_weight if search_type == "hybrid" else None,
"bm25_k1": bot.k1,
"bm25_b": bot.b
}
}
except Exception as e:
print(f"Error in search API: {e}")
return {"error": str(e), "results": []}
def get_stats_api():
"""API endpoint for knowledge base statistics"""
try:
# Calculate document distribution by type
doc_types = {}
sections_by_file = {}
for doc in bot.knowledge_base:
doc_type = doc["metadata"]["type"]
source_file = doc["metadata"]["source"]
doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
return {
"total_documents": len(bot.knowledge_base),
"document_types": doc_types,
"sections_by_file": sections_by_file,
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"search_capabilities": [
"Hybrid Search (Vector + BM25)",
"Semantic Vector Search",
"BM25 Keyword Search",
"GPU Accelerated",
"Transformer Embeddings"
],
"bm25_parameters": {
"k1": bot.k1,
"b": bot.b,
"unique_terms": len(bot.document_frequency),
"average_doc_length": bot.average_doc_length
},
"backend_type": "Hugging Face Space with Hybrid Search",
"knowledge_sources": list(sections_by_file.keys()),
"status": "healthy"
}
except Exception as e:
print(f"Error in get_stats_api: {e}")
return {
"error": str(e),
"status": "error",
"total_documents": 0,
"search_capabilities": ["Error"]
}
def chat_interface(message: str) -> str:
"""Simple chat interface without state management"""
if not message.strip():
return "Please ask me something about Raktim Mondol! I use hybrid search combining semantic similarity and keyword matching for the best results."
try:
# Use hybrid search by default
search_results = bot.hybrid_search(message, top_k=6)
if search_results:
# Build comprehensive response
response_parts = []
response_parts.append(f"π **Hybrid Search Results** (Vector + BM25 combination, found {len(search_results)} relevant sections):\n")
# Use the best match as primary response
best_match = search_results[0]
response_parts.append(f"**Primary Answer** (Hybrid Score: {best_match['score']:.3f}):")
response_parts.append(f"π Source: {best_match['document']['metadata']['source']} - {best_match['document']['metadata']['section']}")
response_parts.append(f"π Search Type: {best_match['search_type'].upper()}")
# Show score breakdown for hybrid results
if 'vector_score' in best_match and 'bm25_score' in best_match:
response_parts.append(f"π Vector Score: {best_match['vector_score']:.3f} | BM25 Score: {best_match['bm25_score']:.3f}")
response_parts.append(f"\n{best_match['document']['content']}\n")
# Add additional context if available
if len(search_results) > 1:
response_parts.append("**Additional Context:**")
for i, result in enumerate(search_results[1:3], 1): # Show up to 2 additional results
section_info = f"{result['document']['metadata']['source']} - {result['document']['metadata']['section']}"
search_info = f"({result['search_type'].upper()}, Score: {result['score']:.3f})"
response_parts.append(f"{i}. {section_info} {search_info}")
# Add a brief excerpt
excerpt = result['document']['content'][:200] + "..." if len(result['document']['content']) > 200 else result['document']['content']
response_parts.append(f" {excerpt}\n")
response_parts.append("\nπ€ **Hybrid Search Technology:**")
response_parts.append("β’ **Vector Search**: Semantic similarity using transformer embeddings")
response_parts.append("β’ **BM25 Search**: Advanced keyword ranking with TF-IDF")
response_parts.append("β’ **Fusion**: Weighted combination for optimal relevance")
response_parts.append("\n[Note: This demonstrates hybrid search results. In production, these would be passed to an LLM for natural response generation.]")
return "\n".join(response_parts)
else:
return "I don't have specific information about that topic in my knowledge base. Could you please ask something else about Raktim Mondol?"
except Exception as e:
print(f"Error in chat interface: {e}")
return "I'm sorry, I encountered an error while processing your question. Please try again."
# Create Gradio interfaces with proper API names
print("Creating Gradio interface...")
# Main chat interface - simplified without state
chat_demo = gr.Interface(
fn=chat_interface,
inputs=gr.Textbox(
label="Ask about Raktim Mondol",
placeholder="What would you like to know about Raktim's research, skills, or experience?",
lines=2
),
outputs=gr.Textbox(
label="Response",
lines=15,
max_lines=20
),
title="π₯ Hybrid Search RAGtim Bot",
description=f"""
**π Hybrid Search System**: This Space implements **true hybrid search** combining:
- π§ **Semantic Vector Search**: Transformer embeddings for conceptual similarity
- π **BM25 Keyword Search**: Advanced TF-IDF ranking for exact term matching
- βοΈ **Intelligent Fusion**: Weighted combination for optimal relevance
**π Knowledge Base**: **{len(bot.knowledge_base)} sections** from comprehensive markdown files
**Ask me anything about Raktim Mondol's research, expertise, and background!**
""",
examples=[
"What is Raktim's LLM and RAG research?",
"Tell me about BioFusionNet statistical methods",
"What are his multimodal AI capabilities?",
"Describe his biostatistics expertise"
],
api_name="chat"
)
# Search API interface
search_demo = gr.Interface(
fn=search_api,
inputs=[
gr.Textbox(label="Search Query", placeholder="Enter your search query"),
gr.Number(label="Top K Results", value=5, minimum=1, maximum=20),
gr.Radio(choices=["hybrid", "vector", "bm25"], value="hybrid", label="Search Type"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6, label="Vector Weight"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.4, label="BM25 Weight")
],
outputs=gr.JSON(label="Search Results"),
title="π Hybrid Search API",
description="Direct access to the hybrid search functionality",
api_name="search"
)
# Stats API interface
stats_demo = gr.Interface(
fn=get_stats_api,
inputs=[],
outputs=gr.JSON(label="System Statistics"),
title="π System Statistics",
description="Knowledge base and system information",
api_name="stats"
)
# Combine interfaces
demo = gr.TabbedInterface(
[chat_demo, search_demo, stats_demo],
["π¬ Chat", "π Search API", "π Stats API"],
title="π₯ Hybrid Search RAGtim Bot - Vector + BM25 Fusion"
)
if __name__ == "__main__":
print("π Launching Hybrid Search RAGtim Bot...")
print(f"π Loaded {len(bot.knowledge_base)} sections from markdown files")
print(f"π BM25 index: {len(bot.document_frequency)} unique terms")
print(f"π§ Vector embeddings: {len(bot.embeddings)} documents")
print("π₯ Hybrid search ready: Semantic + Keyword fusion!")
# Launch the main demo with API access
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |