Spaces:
Running
Running
File size: 17,495 Bytes
4e933f3 be1c5c4 a407706 be1c5c4 a407706 02d23e2 be1c5c4 a407706 be1c5c4 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 4135159 a407706 4135159 a407706 02d23e2 a407706 4135159 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 be1c5c4 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 be1c5c4 a407706 f3d6f52 02d23e2 f3d6f52 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 a407706 02d23e2 f3d6f52 02d23e2 a407706 f3d6f52 a407706 f3d6f52 a407706 f3d6f52 a407706 f3d6f52 a407706 f3d6f52 02d23e2 4e933f3 02d23e2 a407706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import gradio as gr
import json
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import os
from typing import List, Dict, Any
import time
import requests
import re
# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
class RAGtimBot:
def __init__(self):
self.embedder = None
self.knowledge_base = []
self.embeddings = []
self.initialize_models()
self.load_markdown_knowledge_base()
def initialize_models(self):
"""Initialize the embedding model"""
try:
print("Loading embedding model...")
self.embedder = pipeline(
'feature-extraction',
'sentence-transformers/all-MiniLM-L6-v2',
device=0 if device == "cuda" else -1
)
print("β
Embedding model loaded successfully")
except Exception as e:
print(f"β Error loading embedding model: {e}")
raise e
def load_markdown_knowledge_base(self):
"""Load knowledge base from markdown files"""
print("Loading knowledge base from markdown files...")
# Reset knowledge base
self.knowledge_base = []
# Load all markdown files
markdown_files = [
'about.md',
'research_details.md',
'publications_detailed.md',
'skills_expertise.md',
'experience_detailed.md',
'statistics.md'
]
for filename in markdown_files:
try:
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
self.process_markdown_file(content, filename)
print(f"β
Loaded {filename}")
else:
print(f"β οΈ File not found: {filename}")
except Exception as e:
print(f"β Error loading {filename}: {e}")
# Generate embeddings for knowledge base
print("Generating embeddings for knowledge base...")
self.embeddings = []
for i, doc in enumerate(self.knowledge_base):
try:
# Truncate content to avoid token limit issues
content = doc["content"][:500] # Limit to 500 characters
embedding = self.embedder(content, return_tensors="pt")
# Convert to numpy and flatten
embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
self.embeddings.append(embedding_np)
except Exception as e:
print(f"Error generating embedding for doc {doc['id']}: {e}")
# Fallback to zero embedding
self.embeddings.append(np.zeros(384))
print(f"β
Knowledge base loaded with {len(self.knowledge_base)} documents")
def process_markdown_file(self, content: str, filename: str):
"""Process a markdown file and extract sections"""
# Determine file type and priority
file_type_map = {
'about.md': ('about', 10),
'research_details.md': ('research', 9),
'publications_detailed.md': ('publications', 8),
'skills_expertise.md': ('skills', 7),
'experience_detailed.md': ('experience', 8),
'statistics.md': ('statistics', 9)
}
file_type, priority = file_type_map.get(filename, ('general', 5))
# Split content into sections
sections = self.split_markdown_into_sections(content)
for section in sections:
if len(section['content'].strip()) > 100: # Only process substantial content
doc = {
"id": f"{filename}_{section['title']}_{len(self.knowledge_base)}",
"content": section['content'],
"metadata": {
"type": file_type,
"priority": priority,
"section": section['title'],
"source": filename
}
}
self.knowledge_base.append(doc)
def split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
"""Split markdown content into sections based on headers"""
sections = []
lines = content.split('\n')
current_section = {'title': 'Introduction', 'content': ''}
for line in lines:
# Check if line is a header
if line.startswith('#'):
# Save previous section if it has content
if current_section['content'].strip():
sections.append(current_section.copy())
# Start new section
header_level = len(line) - len(line.lstrip('#'))
title = line.lstrip('#').strip()
current_section = {
'title': title,
'content': line + '\n'
}
else:
current_section['content'] += line + '\n'
# Add the last section
if current_section['content'].strip():
sections.append(current_section)
return sections
def cosine_similarity(self, a, b):
"""Calculate cosine similarity between two vectors"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def search_knowledge_base(self, query: str, top_k: int = 5) -> List[Dict]:
"""Search the knowledge base using semantic similarity"""
try:
# Generate query embedding
query_embedding = self.embedder(query[:500], return_tensors="pt") # Truncate query too
query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
# Calculate similarities
similarities = []
for i, doc_embedding in enumerate(self.embeddings):
similarity = self.cosine_similarity(query_vector, doc_embedding)
similarities.append({
"id": self.knowledge_base[i]["id"],
"content": self.knowledge_base[i]["content"],
"metadata": self.knowledge_base[i]["metadata"],
"score": float(similarity),
"index": i
})
# Sort by similarity and priority
similarities.sort(key=lambda x: (x["score"], x["metadata"]["priority"]), reverse=True)
return similarities[:top_k]
except Exception as e:
print(f"Error in search: {e}")
# Fallback to keyword search
return self.keyword_search(query, top_k)
def keyword_search(self, query: str, top_k: int = 5) -> List[Dict]:
"""Fallback keyword search"""
query_terms = query.lower().split()
results = []
for i, doc in enumerate(self.knowledge_base):
content_lower = doc["content"].lower()
score = sum(content_lower.count(term) for term in query_terms)
# Add priority boost
priority_boost = doc["metadata"]["priority"] / 10
final_score = score + priority_boost
if score > 0:
results.append({
"id": doc["id"],
"content": doc["content"],
"metadata": doc["metadata"],
"score": final_score,
"index": i
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:top_k]
# Initialize the bot
print("Initializing RAGtim Bot with markdown knowledge base...")
bot = RAGtimBot()
def search_only_api(query, top_k=5):
"""API endpoint for search-only functionality"""
try:
results = bot.search_knowledge_base(query, top_k)
return {
"results": results,
"query": query,
"top_k": top_k,
"search_type": "semantic",
"total_documents": len(bot.knowledge_base)
}
except Exception as e:
print(f"Error in search API: {e}")
return {"error": str(e), "results": []}
def get_stats_api():
"""API endpoint for knowledge base statistics"""
# Calculate document distribution by type
doc_types = {}
sections_by_file = {}
for doc in bot.knowledge_base:
doc_type = doc["metadata"]["type"]
source_file = doc["metadata"]["source"]
doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
return {
"total_documents": len(bot.knowledge_base),
"document_types": doc_types,
"sections_by_file": sections_by_file,
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"search_capabilities": ["Semantic Search", "GPU Accelerated", "Transformer Embeddings", "Markdown Knowledge Base"],
"backend_type": "Hugging Face Space",
"knowledge_sources": list(sections_by_file.keys())
}
def chat_interface(message, history):
"""Chat interface with markdown knowledge base"""
if not message.strip():
return "Please ask me something about Raktim Mondol! I have comprehensive information loaded from his complete portfolio markdown files."
try:
# Search knowledge base
search_results = bot.search_knowledge_base(message, top_k=6)
if search_results:
# Build comprehensive response
response_parts = []
response_parts.append(f"Based on my markdown knowledge base (found {len(search_results)} relevant sections):\n")
# Use the best match as primary response
best_match = search_results[0]
response_parts.append(f"**Primary Answer** (Relevance: {best_match['score']:.2f}):")
response_parts.append(f"Source: {best_match['metadata']['source']} - {best_match['metadata']['section']}")
response_parts.append(f"{best_match['content']}\n")
# Add additional context if available
if len(search_results) > 1:
response_parts.append("**Additional Context:**")
for i, result in enumerate(search_results[1:3], 1): # Show up to 2 additional results
section_info = f"{result['metadata']['source']} - {result['metadata']['section']}"
response_parts.append(f"{i}. {section_info} (Relevance: {result['score']:.2f})")
# Add a brief excerpt
excerpt = result['content'][:200] + "..." if len(result['content']) > 200 else result['content']
response_parts.append(f" {excerpt}\n")
response_parts.append("\n[Note: This response is generated from your complete markdown knowledge base. In hybrid mode, DeepSeek LLM would generate more natural responses using this context.]")
return "\n".join(response_parts)
else:
return "I don't have specific information about that topic in my markdown knowledge base. Could you please ask something else about Raktim Mondol?"
except Exception as e:
print(f"Error in chat interface: {e}")
return "I'm sorry, I encountered an error while processing your question. Please try again."
# Create Gradio interface
print("Creating Gradio interface...")
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.chat-message {
padding: 10px;
margin: 5px 0;
border-radius: 10px;
}
"""
# Create the main chat interface - UPDATED FOR GRADIO 5.34.0
with gr.Blocks(
title="π€ RAGtim Bot - Markdown Knowledge Base",
css=css,
theme=gr.themes.Soft(
primary_hue="green",
secondary_hue="blue",
neutral_hue="slate"
)
) as chat_demo:
gr.Markdown(f"""
# π€ RAGtim Bot - Markdown Knowledge Base
**Complete Markdown Knowledge Base**: This Hugging Face Space loads all markdown files from Raktim Mondol's portfolio with **{len(bot.knowledge_base)} knowledge sections**.
**Loaded Markdown Files:**
- π **about.md** - Personal information, contact details, professional summary
- π¬ **research_details.md** - Detailed research projects, methodologies, current work
- π **publications_detailed.md** - Complete publication details, technical contributions
- π» **skills_expertise.md** - Comprehensive technical skills, tools, frameworks
- πΌ **experience_detailed.md** - Professional experience, teaching, research roles
- π **statistics.md** - Statistical methods, biostatistics expertise, methodologies
**Search Capabilities:**
- π Semantic similarity search using transformers
- π GPU-accelerated embeddings with priority ranking
- π Relevance scoring across all markdown content
- π― Section-level granular search within each file
**API Endpoints:**
- `/api/search` - Search across complete markdown knowledge base
- `/api/stats` - Detailed statistics about loaded content
**Ask me anything about Raktim Mondol:**
- Research projects, methodologies, and innovations
- Publications with technical details and impact
- Technical skills, programming expertise, and tools
- Educational background and academic achievements
- Professional experience and teaching roles
- Statistical methods and biostatistics applications
- Awards, recognition, and professional development
- Contact information and collaboration opportunities
**Note**: This demo shows search results from the complete markdown knowledge base. In hybrid mode, these results are passed to DeepSeek LLM for natural response generation.
""")
chatbot = gr.Chatbot(
height=600,
show_label=False,
container=True,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask me anything about Raktim Mondol's research, skills, experience, publications...",
container=False,
scale=7,
show_label=False
)
submit_btn = gr.Button("Search Knowledge Base", scale=1)
# Example buttons
with gr.Row():
examples = [
"What is Raktim's research about?",
"Tell me about BioFusionNet in detail",
"What are his LLM and RAG expertise?",
"Describe his statistical methods and biostatistics work"
]
for example in examples:
gr.Button(example, size="sm").click(
lambda x=example: x, outputs=msg
)
def respond(message, history):
if not message.strip():
return history, ""
# Add user message to history
history.append({"role": "user", "content": message})
# Get bot response
bot_response = chat_interface(message, history)
# Add bot response to history
history.append({"role": "assistant", "content": bot_response})
return history, ""
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
msg.submit(respond, [msg, chatbot], [chatbot, msg])
# Create API interface for search-only functionality
with gr.Blocks(title="π Search API") as search_demo:
gr.Markdown("# π Markdown Knowledge Base Search API")
gr.Markdown("Direct access to semantic search across all loaded markdown files")
with gr.Row():
search_input = gr.Textbox(
label="Search Query",
placeholder="Enter your search query about Raktim Mondol..."
)
top_k_slider = gr.Slider(
minimum=1,
maximum=15,
value=5,
step=1,
label="Top K Results"
)
search_output = gr.JSON(label="Markdown Knowledge Base Search Results")
search_btn = gr.Button("Search")
search_btn.click(
search_only_api,
inputs=[search_input, top_k_slider],
outputs=search_output
)
# Create stats interface
with gr.Blocks(title="π Stats API") as stats_demo:
gr.Markdown("# π Knowledge Base Stats")
gr.Markdown("Detailed statistics about the loaded markdown knowledge base")
stats_output = gr.JSON(label="Markdown Knowledge Base Statistics")
stats_btn = gr.Button("Get Statistics")
stats_btn.click(
get_stats_api,
inputs=[],
outputs=stats_output
)
# Combine interfaces using TabbedInterface
demo = gr.TabbedInterface(
[chat_demo, search_demo, stats_demo],
["π¬ Markdown Chat", "π Search API", "π Stats API"],
title="π€ RAGtim Bot - Complete Markdown Knowledge Base"
)
if __name__ == "__main__":
print("π Launching RAGtim Bot with Markdown Knowledge Base...")
print(f"π Loaded {len(bot.knowledge_base)} sections from markdown files")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |