Spaces:
Running
Running
File size: 26,275 Bytes
4e2d884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
import gradio as gr
import json
import numpy as np
from transformers import pipeline
import torch
import os
from typing import List, Dict, Any, Optional
import re
import math
from collections import defaultdict, Counter
from pathlib import Path
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
class DocumentProcessor:
"""Handles document processing and text extraction from markdown files."""
def __init__(self, knowledge_base_dir: str = "knowledge_base"):
self.knowledge_base_dir = Path(knowledge_base_dir)
def load_markdown_files(self) -> List[Dict[str, Any]]:
"""Load and process all markdown files in the knowledge base directory."""
documents = []
file_priorities = {
'about.md': 10,
'research_details.md': 9,
'publications_detailed.md': 8,
'skills_expertise.md': 7,
'experience_detailed.md': 8,
'statistics.md': 9
}
for file_path in self.knowledge_base_dir.glob("*.md"):
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
file_type = file_path.stem
priority = file_priorities.get(file_path.name, 5)
sections = self._split_markdown_into_sections(content)
for section in sections:
if len(section['content'].strip()) > 100:
doc = {
"id": f"{file_path.name}_{section['title']}_{len(documents)}",
"content": section['content'],
"metadata": {
"type": file_type,
"priority": priority,
"section": section['title'],
"source": file_path.name
}
}
documents.append(doc)
logger.info(f"β
Loaded {file_path.name}")
except Exception as e:
logger.error(f"β Error loading {file_path.name}: {e}")
return documents
def _split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
"""Split markdown content into sections based on headers."""
sections = []
lines = content.split('\n')
current_section = {'title': 'Introduction', 'content': ''}
for line in lines:
if line.startswith('#'):
if current_section['content'].strip():
sections.append(current_section.copy())
title = line.lstrip('#').strip()
current_section = {
'title': title,
'content': line + '\n'
}
else:
current_section['content'] += line + '\n'
if current_section['content'].strip():
sections.append(current_section)
return sections
class BM25Searcher:
"""Implements BM25 search algorithm for keyword-based document retrieval."""
def __init__(self, k1: float = 1.5, b: float = 0.75):
self.k1 = k1
self.b = b
self.term_frequencies = {}
self.document_frequency = defaultdict(int)
self.document_lengths = {}
self.average_doc_length = 0
self.total_documents = 0
def build_index(self, documents: List[Dict[str, Any]]):
"""Build BM25 index from documents."""
logger.info("Building BM25 index...")
self.term_frequencies = {}
self.document_frequency = defaultdict(int)
self.document_lengths = {}
total_length = 0
for doc in documents:
doc_id = doc['id']
terms = self._tokenize(doc['content'])
term_freq = Counter(terms)
self.term_frequencies[doc_id] = dict(term_freq)
doc_length = len(terms)
self.document_lengths[doc_id] = doc_length
total_length += doc_length
unique_terms = set(terms)
for term in unique_terms:
self.document_frequency[term] += 1
self.total_documents = len(documents)
self.average_doc_length = total_length / self.total_documents if self.total_documents > 0 else 0
logger.info(f"β
BM25 index built: {len(self.document_frequency)} unique terms")
def search(self, query: str, documents: List[Dict[str, Any]], top_k: int = 10) -> List[Dict[str, Any]]:
"""Perform BM25 search."""
query_terms = self._tokenize(query)
if not query_terms:
return []
scores = {}
for doc in documents:
doc_id = doc['id']
score = 0.0
for term in query_terms:
score += self._calculate_bm25_score(term, doc_id)
if score > 0:
priority_boost = 1 + (doc['metadata']['priority'] / 50)
final_score = score * priority_boost
scores[doc_id] = {
'document': doc,
'score': final_score,
'search_type': 'bm25'
}
sorted_results = sorted(scores.values(), key=lambda x: x['score'], reverse=True)
return sorted_results[:top_k]
def _tokenize(self, text: str) -> List[str]:
"""Tokenize text for BM25."""
text = re.sub(r'[^\w\s]', ' ', text.lower())
words = [word for word in text.split() if len(word) > 2 and not self._is_stop_word(word)]
return words
def _is_stop_word(self, word: str) -> bool:
"""Check if word is a stop word."""
stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
'will', 'would', 'could', 'should', 'may', 'might', 'can', 'this', 'that', 'these', 'those'
}
return word in stop_words
def _calculate_bm25_score(self, term: str, doc_id: str) -> float:
"""Calculate BM25 score for a term in a document."""
tf = self.term_frequencies.get(doc_id, {}).get(term, 0)
if tf == 0:
return 0.0
df = self.document_frequency.get(term, 1)
doc_length = self.document_lengths.get(doc_id, 0)
idf = math.log((self.total_documents - df + 0.5) / (df + 0.5))
numerator = tf * (self.k1 + 1)
denominator = tf + self.k1 * (1 - self.b + self.b * (doc_length / self.average_doc_length))
return idf * (numerator / denominator)
class VectorSearcher:
"""Implements vector-based semantic search using transformer embeddings."""
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
self.model_name = model_name
self.embedder = None
self.embeddings = []
def initialize_model(self):
"""Initialize the embedding model."""
try:
logger.info("Loading embedding model...")
self.embedder = pipeline(
'feature-extraction',
self.model_name,
device=0 if device == "cuda" else -1
)
logger.info("β
Embedding model loaded successfully")
except Exception as e:
logger.error(f"β Error loading embedding model: {e}")
raise e
def build_embeddings(self, documents: List[Dict[str, Any]]):
"""Build embeddings for all documents."""
logger.info("Generating embeddings for knowledge base...")
self.embeddings = []
for i, doc in enumerate(documents):
try:
content = doc["content"][:500] # Limit to 500 characters
embedding = self.embedder(content, return_tensors="pt")
embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
self.embeddings.append(embedding_np)
except Exception as e:
logger.error(f"Error generating embedding for doc {doc['id']}: {e}")
self.embeddings.append(np.zeros(384))
logger.info(f"β
Generated {len(self.embeddings)} embeddings")
def search(self, query: str, documents: List[Dict[str, Any]], top_k: int = 10) -> List[Dict[str, Any]]:
"""Perform vector similarity search."""
try:
query_embedding = self.embedder(query[:500], return_tensors="pt")
query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
similarities = []
for i, doc_embedding in enumerate(self.embeddings):
if doc_embedding is not None and len(doc_embedding) > 0:
similarity = self._cosine_similarity(query_vector, doc_embedding)
priority_boost = 1 + (documents[i]['metadata']['priority'] / 100)
final_score = similarity * priority_boost
similarities.append({
'document': documents[i],
'score': float(final_score),
'search_type': 'vector'
})
similarities.sort(key=lambda x: x['score'], reverse=True)
return similarities[:top_k]
except Exception as e:
logger.error(f"Error in vector search: {e}")
return []
def _cosine_similarity(self, a: np.ndarray, b: np.ndarray) -> float:
"""Calculate cosine similarity between two vectors."""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
class HybridSearchSystem:
"""Main hybrid search system combining BM25 and vector search."""
def __init__(self):
self.doc_processor = DocumentProcessor()
self.bm25_searcher = BM25Searcher()
self.vector_searcher = VectorSearcher()
self.documents = []
def initialize(self):
"""Initialize the entire search system."""
logger.info("Initializing Hybrid Search RAGtim Bot...")
# Load documents
self.documents = self.doc_processor.load_markdown_files()
# Initialize models and build indices
self.vector_searcher.initialize_model()
self.vector_searcher.build_embeddings(self.documents)
self.bm25_searcher.build_index(self.documents)
logger.info(f"β
System initialized with {len(self.documents)} documents")
def search(self, query: str, search_type: str = "hybrid", top_k: int = 5,
vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict[str, Any]]:
"""Perform search based on specified method."""
if search_type == "vector":
return self.vector_searcher.search(query, self.documents, top_k)
elif search_type == "bm25":
return self.bm25_searcher.search(query, self.documents, top_k)
else: # hybrid
return self._hybrid_search(query, top_k, vector_weight, bm25_weight)
def _hybrid_search(self, query: str, top_k: int = 10,
vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict[str, Any]]:
"""Perform hybrid search combining vector and BM25 results."""
try:
vector_results = self.vector_searcher.search(query, self.documents, top_k * 2)
bm25_results = self.bm25_searcher.search(query, self.documents, top_k * 2)
# Normalize scores
if vector_results:
max_vector_score = max(r['score'] for r in vector_results)
if max_vector_score > 0:
for result in vector_results:
result['normalized_score'] = result['score'] / max_vector_score
else:
for result in vector_results:
result['normalized_score'] = 0
if bm25_results:
max_bm25_score = max(r['score'] for r in bm25_results)
if max_bm25_score > 0:
for result in bm25_results:
result['normalized_score'] = result['score'] / max_bm25_score
else:
for result in bm25_results:
result['normalized_score'] = 0
# Combine results
combined_scores = {}
for result in vector_results:
doc_id = result['document']['id']
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': result['normalized_score'],
'bm25_score': 0.0,
'search_type': 'vector'
}
for result in bm25_results:
doc_id = result['document']['id']
if doc_id in combined_scores:
combined_scores[doc_id]['bm25_score'] = result['normalized_score']
combined_scores[doc_id]['search_type'] = 'hybrid'
else:
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': 0.0,
'bm25_score': result['normalized_score'],
'search_type': 'bm25'
}
# Calculate final hybrid scores
final_results = []
for doc_id, data in combined_scores.items():
hybrid_score = (vector_weight * data['vector_score']) + (bm25_weight * data['bm25_score'])
final_results.append({
'document': data['document'],
'score': hybrid_score,
'vector_score': data['vector_score'],
'bm25_score': data['bm25_score'],
'search_type': data['search_type']
})
final_results.sort(key=lambda x: x['score'], reverse=True)
return final_results[:top_k]
except Exception as e:
logger.error(f"Error in hybrid search: {e}")
return self.vector_searcher.search(query, self.documents, top_k)
# Initialize the search system
search_system = HybridSearchSystem()
search_system.initialize()
# API Functions
def search_api(query: str, top_k: int = 5, search_type: str = "hybrid",
vector_weight: float = 0.6, bm25_weight: float = 0.4) -> Dict[str, Any]:
"""API endpoint for search functionality."""
try:
results = search_system.search(query, search_type, top_k, vector_weight, bm25_weight)
return {
"results": results,
"query": query,
"top_k": top_k,
"search_type": search_type,
"total_documents": len(search_system.documents),
"search_parameters": {
"vector_weight": vector_weight if search_type == "hybrid" else None,
"bm25_weight": bm25_weight if search_type == "hybrid" else None,
"bm25_k1": search_system.bm25_searcher.k1,
"bm25_b": search_system.bm25_searcher.b
}
}
except Exception as e:
logger.error(f"Error in search API: {e}")
return {"error": str(e), "results": []}
def get_stats_api() -> Dict[str, Any]:
"""API endpoint for system statistics."""
try:
doc_types = {}
sections_by_file = {}
for doc in search_system.documents:
doc_type = doc["metadata"]["type"]
source_file = doc["metadata"]["source"]
doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
return {
"total_documents": len(search_system.documents),
"document_types": doc_types,
"sections_by_file": sections_by_file,
"model_name": search_system.vector_searcher.model_name,
"embedding_dimension": 384,
"search_capabilities": [
"Hybrid Search (Vector + BM25)",
"Semantic Vector Search",
"BM25 Keyword Search",
"GPU Accelerated",
"Transformer Embeddings"
],
"bm25_parameters": {
"k1": search_system.bm25_searcher.k1,
"b": search_system.bm25_searcher.b,
"unique_terms": len(search_system.bm25_searcher.document_frequency),
"average_doc_length": search_system.bm25_searcher.average_doc_length
},
"backend_type": "Hugging Face Space with Hybrid Search",
"knowledge_sources": list(sections_by_file.keys()),
"status": "healthy"
}
except Exception as e:
logger.error(f"Error in get_stats_api: {e}")
return {
"error": str(e),
"status": "error",
"total_documents": 0,
"search_capabilities": ["Error"]
}
def chat_interface(message: str) -> str:
"""Enhanced chat interface with better formatting."""
if not message.strip():
return "Please ask me something about Raktim Mondol! I use hybrid search combining semantic similarity and keyword matching for the best results."
try:
search_results = search_system.search(message, "hybrid", 6)
if search_results:
response_parts = []
response_parts.append(f"π **Found {len(search_results)} relevant results using hybrid search**\n")
best_match = search_results[0]
response_parts.append(f"**Primary Answer** (Score: {best_match['score']:.3f})")
response_parts.append(f"π Source: {best_match['document']['metadata']['source']} - {best_match['document']['metadata']['section']}")
response_parts.append(f"π Search Type: {best_match['search_type'].upper()}")
if 'vector_score' in best_match and 'bm25_score' in best_match:
response_parts.append(f"π Vector: {best_match['vector_score']:.3f} | BM25: {best_match['bm25_score']:.3f}")
response_parts.append(f"\n{best_match['document']['content']}\n")
if len(search_results) > 1:
response_parts.append("**Additional Context:**")
for i, result in enumerate(search_results[1:3], 1):
section_info = f"{result['document']['metadata']['source']} - {result['document']['metadata']['section']}"
search_info = f"({result['search_type'].upper()}, Score: {result['score']:.3f})"
response_parts.append(f"{i}. {section_info} {search_info}")
excerpt = result['document']['content'][:200] + "..." if len(result['document']['content']) > 200 else result['document']['content']
response_parts.append(f" {excerpt}\n")
response_parts.append("\nπ€ **Powered by Hybrid Search Technology**")
response_parts.append("β’ Vector Search: Semantic understanding with transformers")
response_parts.append("β’ BM25 Search: Advanced keyword ranking")
response_parts.append("β’ Smart Fusion: Optimal relevance through weighted combination")
return "\n".join(response_parts)
else:
return "I don't have specific information about that topic in my knowledge base. Could you please ask something else about Raktim Mondol?"
except Exception as e:
logger.error(f"Error in chat interface: {e}")
return "I'm sorry, I encountered an error while processing your question. Please try again."
# Create Gradio Interface with modern Gradio 5 features
with gr.Blocks(
title="π₯ Hybrid Search RAGtim Bot",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.chat-container {
height: 600px;
}
"""
) as demo:
gr.Markdown("""
# π₯ Hybrid Search RAGtim Bot
**Advanced AI-powered search system combining semantic understanding with keyword precision**
π§ **Semantic Vector Search** + π **BM25 Keyword Search** = β‘ **Optimal Results**
Built with Gradio 5, featuring modern UI components and enhanced performance
""")
with gr.Tabs():
with gr.Tab("π¬ Chat Interface"):
gr.Markdown("### Ask anything about Raktim Mondol's research, skills, or experience")
chatbot = gr.Chatbot(
value=[],
label="RAGtim Bot",
height=400,
show_copy_button=True,
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
label="Your Question",
placeholder="What would you like to know about Raktim's research or expertise?",
scale=4,
lines=2
)
submit_btn = gr.Button("Ask", variant="primary", scale=1)
gr.Examples(
examples=[
"What is Raktim's research in LLMs and RAG?",
"Tell me about BioFusionNet and statistical methods",
"What are his multimodal AI capabilities?",
"Describe his biostatistics expertise"
],
inputs=msg
)
def respond(message, history):
response = chat_interface(message)
history.append((message, response))
return history, ""
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
msg.submit(respond, [msg, chatbot], [chatbot, msg])
with gr.Tab("π Advanced Search API"):
gr.Markdown("### Direct access to the hybrid search engine")
with gr.Row():
with gr.Column(scale=2):
search_query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query here..."
)
with gr.Row():
search_type = gr.Radio(
choices=["hybrid", "vector", "bm25"],
value="hybrid",
label="Search Method"
)
top_k = gr.Slider(
minimum=1, maximum=20, value=5, step=1,
label="Number of Results"
)
with gr.Row():
vector_weight = gr.Slider(
minimum=0.0, maximum=1.0, value=0.6, step=0.1,
label="Vector Weight"
)
bm25_weight = gr.Slider(
minimum=0.0, maximum=1.0, value=0.4, step=0.1,
label="BM25 Weight"
)
search_btn = gr.Button("π Search", variant="primary")
with gr.Column(scale=3):
search_results = gr.JSON(
label="Search Results",
show_label=True
)
search_btn.click(
search_api,
inputs=[search_query, top_k, search_type, vector_weight, bm25_weight],
outputs=search_results
)
with gr.Tab("π System Statistics"):
gr.Markdown("### Knowledge base and system information")
stats_btn = gr.Button("π Get Statistics", variant="secondary")
stats_output = gr.JSON(
label="System Statistics",
show_label=True
)
stats_btn.click(get_stats_api, outputs=stats_output)
# Auto-load stats on tab open
demo.load(get_stats_api, outputs=stats_output)
if __name__ == "__main__":
logger.info("π Launching Hybrid Search RAGtim Bot...")
logger.info(f"π Loaded {len(search_system.documents)} documents")
logger.info(f"π BM25 index: {len(search_system.bm25_searcher.document_frequency)} unique terms")
logger.info(f"π§ Vector embeddings: {len(search_system.vector_searcher.embeddings)} documents")
logger.info("π₯ Hybrid search ready!")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
show_api=True
) |