File size: 26,275 Bytes
4e2d884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import gradio as gr
import json
import numpy as np
from transformers import pipeline
import torch
import os
from typing import List, Dict, Any, Optional
import re
import math
from collections import defaultdict, Counter
from pathlib import Path
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")

class DocumentProcessor:
    """Handles document processing and text extraction from markdown files."""
    
    def __init__(self, knowledge_base_dir: str = "knowledge_base"):
        self.knowledge_base_dir = Path(knowledge_base_dir)
        
    def load_markdown_files(self) -> List[Dict[str, Any]]:
        """Load and process all markdown files in the knowledge base directory."""
        documents = []
        
        file_priorities = {
            'about.md': 10,
            'research_details.md': 9,
            'publications_detailed.md': 8,
            'skills_expertise.md': 7,
            'experience_detailed.md': 8,
            'statistics.md': 9
        }
        
        for file_path in self.knowledge_base_dir.glob("*.md"):
            try:
                with open(file_path, 'r', encoding='utf-8') as f:
                    content = f.read()
                
                file_type = file_path.stem
                priority = file_priorities.get(file_path.name, 5)
                
                sections = self._split_markdown_into_sections(content)
                
                for section in sections:
                    if len(section['content'].strip()) > 100:
                        doc = {
                            "id": f"{file_path.name}_{section['title']}_{len(documents)}",
                            "content": section['content'],
                            "metadata": {
                                "type": file_type,
                                "priority": priority,
                                "section": section['title'],
                                "source": file_path.name
                            }
                        }
                        documents.append(doc)
                        
                logger.info(f"βœ… Loaded {file_path.name}")
                
            except Exception as e:
                logger.error(f"❌ Error loading {file_path.name}: {e}")
                
        return documents
    
    def _split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
        """Split markdown content into sections based on headers."""
        sections = []
        lines = content.split('\n')
        current_section = {'title': 'Introduction', 'content': ''}
        
        for line in lines:
            if line.startswith('#'):
                if current_section['content'].strip():
                    sections.append(current_section.copy())
                
                title = line.lstrip('#').strip()
                current_section = {
                    'title': title,
                    'content': line + '\n'
                }
            else:
                current_section['content'] += line + '\n'
        
        if current_section['content'].strip():
            sections.append(current_section)
        
        return sections

class BM25Searcher:
    """Implements BM25 search algorithm for keyword-based document retrieval."""
    
    def __init__(self, k1: float = 1.5, b: float = 0.75):
        self.k1 = k1
        self.b = b
        self.term_frequencies = {}
        self.document_frequency = defaultdict(int)
        self.document_lengths = {}
        self.average_doc_length = 0
        self.total_documents = 0
        
    def build_index(self, documents: List[Dict[str, Any]]):
        """Build BM25 index from documents."""
        logger.info("Building BM25 index...")
        
        self.term_frequencies = {}
        self.document_frequency = defaultdict(int)
        self.document_lengths = {}
        
        total_length = 0
        
        for doc in documents:
            doc_id = doc['id']
            terms = self._tokenize(doc['content'])
            
            term_freq = Counter(terms)
            self.term_frequencies[doc_id] = dict(term_freq)
            
            doc_length = len(terms)
            self.document_lengths[doc_id] = doc_length
            total_length += doc_length
            
            unique_terms = set(terms)
            for term in unique_terms:
                self.document_frequency[term] += 1
        
        self.total_documents = len(documents)
        self.average_doc_length = total_length / self.total_documents if self.total_documents > 0 else 0
        
        logger.info(f"βœ… BM25 index built: {len(self.document_frequency)} unique terms")
    
    def search(self, query: str, documents: List[Dict[str, Any]], top_k: int = 10) -> List[Dict[str, Any]]:
        """Perform BM25 search."""
        query_terms = self._tokenize(query)
        if not query_terms:
            return []
        
        scores = {}
        
        for doc in documents:
            doc_id = doc['id']
            score = 0.0
            
            for term in query_terms:
                score += self._calculate_bm25_score(term, doc_id)
            
            if score > 0:
                priority_boost = 1 + (doc['metadata']['priority'] / 50)
                final_score = score * priority_boost
                
                scores[doc_id] = {
                    'document': doc,
                    'score': final_score,
                    'search_type': 'bm25'
                }
        
        sorted_results = sorted(scores.values(), key=lambda x: x['score'], reverse=True)
        return sorted_results[:top_k]
    
    def _tokenize(self, text: str) -> List[str]:
        """Tokenize text for BM25."""
        text = re.sub(r'[^\w\s]', ' ', text.lower())
        words = [word for word in text.split() if len(word) > 2 and not self._is_stop_word(word)]
        return words
    
    def _is_stop_word(self, word: str) -> bool:
        """Check if word is a stop word."""
        stop_words = {
            'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
            'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
            'will', 'would', 'could', 'should', 'may', 'might', 'can', 'this', 'that', 'these', 'those'
        }
        return word in stop_words
    
    def _calculate_bm25_score(self, term: str, doc_id: str) -> float:
        """Calculate BM25 score for a term in a document."""
        tf = self.term_frequencies.get(doc_id, {}).get(term, 0)
        if tf == 0:
            return 0.0
        
        df = self.document_frequency.get(term, 1)
        doc_length = self.document_lengths.get(doc_id, 0)
        
        idf = math.log((self.total_documents - df + 0.5) / (df + 0.5))
        
        numerator = tf * (self.k1 + 1)
        denominator = tf + self.k1 * (1 - self.b + self.b * (doc_length / self.average_doc_length))
        
        return idf * (numerator / denominator)

class VectorSearcher:
    """Implements vector-based semantic search using transformer embeddings."""
    
    def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
        self.model_name = model_name
        self.embedder = None
        self.embeddings = []
        
    def initialize_model(self):
        """Initialize the embedding model."""
        try:
            logger.info("Loading embedding model...")
            self.embedder = pipeline(
                'feature-extraction',
                self.model_name,
                device=0 if device == "cuda" else -1
            )
            logger.info("βœ… Embedding model loaded successfully")
        except Exception as e:
            logger.error(f"❌ Error loading embedding model: {e}")
            raise e
    
    def build_embeddings(self, documents: List[Dict[str, Any]]):
        """Build embeddings for all documents."""
        logger.info("Generating embeddings for knowledge base...")
        self.embeddings = []
        
        for i, doc in enumerate(documents):
            try:
                content = doc["content"][:500]  # Limit to 500 characters
                embedding = self.embedder(content, return_tensors="pt")
                embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
                self.embeddings.append(embedding_np)
            except Exception as e:
                logger.error(f"Error generating embedding for doc {doc['id']}: {e}")
                self.embeddings.append(np.zeros(384))
        
        logger.info(f"βœ… Generated {len(self.embeddings)} embeddings")
    
    def search(self, query: str, documents: List[Dict[str, Any]], top_k: int = 10) -> List[Dict[str, Any]]:
        """Perform vector similarity search."""
        try:
            query_embedding = self.embedder(query[:500], return_tensors="pt")
            query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
            
            similarities = []
            for i, doc_embedding in enumerate(self.embeddings):
                if doc_embedding is not None and len(doc_embedding) > 0:
                    similarity = self._cosine_similarity(query_vector, doc_embedding)
                    
                    priority_boost = 1 + (documents[i]['metadata']['priority'] / 100)
                    final_score = similarity * priority_boost
                    
                    similarities.append({
                        'document': documents[i],
                        'score': float(final_score),
                        'search_type': 'vector'
                    })
            
            similarities.sort(key=lambda x: x['score'], reverse=True)
            return similarities[:top_k]
            
        except Exception as e:
            logger.error(f"Error in vector search: {e}")
            return []
    
    def _cosine_similarity(self, a: np.ndarray, b: np.ndarray) -> float:
        """Calculate cosine similarity between two vectors."""
        return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))

class HybridSearchSystem:
    """Main hybrid search system combining BM25 and vector search."""
    
    def __init__(self):
        self.doc_processor = DocumentProcessor()
        self.bm25_searcher = BM25Searcher()
        self.vector_searcher = VectorSearcher()
        self.documents = []
        
    def initialize(self):
        """Initialize the entire search system."""
        logger.info("Initializing Hybrid Search RAGtim Bot...")
        
        # Load documents
        self.documents = self.doc_processor.load_markdown_files()
        
        # Initialize models and build indices
        self.vector_searcher.initialize_model()
        self.vector_searcher.build_embeddings(self.documents)
        self.bm25_searcher.build_index(self.documents)
        
        logger.info(f"βœ… System initialized with {len(self.documents)} documents")
    
    def search(self, query: str, search_type: str = "hybrid", top_k: int = 5, 

              vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict[str, Any]]:
        """Perform search based on specified method."""
        if search_type == "vector":
            return self.vector_searcher.search(query, self.documents, top_k)
        elif search_type == "bm25":
            return self.bm25_searcher.search(query, self.documents, top_k)
        else:  # hybrid
            return self._hybrid_search(query, top_k, vector_weight, bm25_weight)
    
    def _hybrid_search(self, query: str, top_k: int = 10, 

                      vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict[str, Any]]:
        """Perform hybrid search combining vector and BM25 results."""
        try:
            vector_results = self.vector_searcher.search(query, self.documents, top_k * 2)
            bm25_results = self.bm25_searcher.search(query, self.documents, top_k * 2)
            
            # Normalize scores
            if vector_results:
                max_vector_score = max(r['score'] for r in vector_results)
                if max_vector_score > 0:
                    for result in vector_results:
                        result['normalized_score'] = result['score'] / max_vector_score
                else:
                    for result in vector_results:
                        result['normalized_score'] = 0
            
            if bm25_results:
                max_bm25_score = max(r['score'] for r in bm25_results)
                if max_bm25_score > 0:
                    for result in bm25_results:
                        result['normalized_score'] = result['score'] / max_bm25_score
                else:
                    for result in bm25_results:
                        result['normalized_score'] = 0
            
            # Combine results
            combined_scores = {}
            
            for result in vector_results:
                doc_id = result['document']['id']
                combined_scores[doc_id] = {
                    'document': result['document'],
                    'vector_score': result['normalized_score'],
                    'bm25_score': 0.0,
                    'search_type': 'vector'
                }
            
            for result in bm25_results:
                doc_id = result['document']['id']
                if doc_id in combined_scores:
                    combined_scores[doc_id]['bm25_score'] = result['normalized_score']
                    combined_scores[doc_id]['search_type'] = 'hybrid'
                else:
                    combined_scores[doc_id] = {
                        'document': result['document'],
                        'vector_score': 0.0,
                        'bm25_score': result['normalized_score'],
                        'search_type': 'bm25'
                    }
            
            # Calculate final hybrid scores
            final_results = []
            for doc_id, data in combined_scores.items():
                hybrid_score = (vector_weight * data['vector_score']) + (bm25_weight * data['bm25_score'])
                final_results.append({
                    'document': data['document'],
                    'score': hybrid_score,
                    'vector_score': data['vector_score'],
                    'bm25_score': data['bm25_score'],
                    'search_type': data['search_type']
                })
            
            final_results.sort(key=lambda x: x['score'], reverse=True)
            return final_results[:top_k]
            
        except Exception as e:
            logger.error(f"Error in hybrid search: {e}")
            return self.vector_searcher.search(query, self.documents, top_k)

# Initialize the search system
search_system = HybridSearchSystem()
search_system.initialize()

# API Functions
def search_api(query: str, top_k: int = 5, search_type: str = "hybrid", 

               vector_weight: float = 0.6, bm25_weight: float = 0.4) -> Dict[str, Any]:
    """API endpoint for search functionality."""
    try:
        results = search_system.search(query, search_type, top_k, vector_weight, bm25_weight)
        
        return {
            "results": results,
            "query": query,
            "top_k": top_k,
            "search_type": search_type,
            "total_documents": len(search_system.documents),
            "search_parameters": {
                "vector_weight": vector_weight if search_type == "hybrid" else None,
                "bm25_weight": bm25_weight if search_type == "hybrid" else None,
                "bm25_k1": search_system.bm25_searcher.k1,
                "bm25_b": search_system.bm25_searcher.b
            }
        }
    except Exception as e:
        logger.error(f"Error in search API: {e}")
        return {"error": str(e), "results": []}

def get_stats_api() -> Dict[str, Any]:
    """API endpoint for system statistics."""
    try:
        doc_types = {}
        sections_by_file = {}
        
        for doc in search_system.documents:
            doc_type = doc["metadata"]["type"]
            source_file = doc["metadata"]["source"]
            
            doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
            sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
        
        return {
            "total_documents": len(search_system.documents),
            "document_types": doc_types,
            "sections_by_file": sections_by_file,
            "model_name": search_system.vector_searcher.model_name,
            "embedding_dimension": 384,
            "search_capabilities": [
                "Hybrid Search (Vector + BM25)",
                "Semantic Vector Search", 
                "BM25 Keyword Search",
                "GPU Accelerated",
                "Transformer Embeddings"
            ],
            "bm25_parameters": {
                "k1": search_system.bm25_searcher.k1,
                "b": search_system.bm25_searcher.b,
                "unique_terms": len(search_system.bm25_searcher.document_frequency),
                "average_doc_length": search_system.bm25_searcher.average_doc_length
            },
            "backend_type": "Hugging Face Space with Hybrid Search",
            "knowledge_sources": list(sections_by_file.keys()),
            "status": "healthy"
        }
    except Exception as e:
        logger.error(f"Error in get_stats_api: {e}")
        return {
            "error": str(e),
            "status": "error",
            "total_documents": 0,
            "search_capabilities": ["Error"]
        }

def chat_interface(message: str) -> str:
    """Enhanced chat interface with better formatting."""
    if not message.strip():
        return "Please ask me something about Raktim Mondol! I use hybrid search combining semantic similarity and keyword matching for the best results."
    
    try:
        search_results = search_system.search(message, "hybrid", 6)
        
        if search_results:
            response_parts = []
            response_parts.append(f"πŸ” **Found {len(search_results)} relevant results using hybrid search**\n")
            
            best_match = search_results[0]
            response_parts.append(f"**Primary Answer** (Score: {best_match['score']:.3f})")
            response_parts.append(f"πŸ“„ Source: {best_match['document']['metadata']['source']} - {best_match['document']['metadata']['section']}")
            response_parts.append(f"πŸ” Search Type: {best_match['search_type'].upper()}")
            
            if 'vector_score' in best_match and 'bm25_score' in best_match:
                response_parts.append(f"πŸ“Š Vector: {best_match['vector_score']:.3f} | BM25: {best_match['bm25_score']:.3f}")
            
            response_parts.append(f"\n{best_match['document']['content']}\n")
            
            if len(search_results) > 1:
                response_parts.append("**Additional Context:**")
                for i, result in enumerate(search_results[1:3], 1):
                    section_info = f"{result['document']['metadata']['source']} - {result['document']['metadata']['section']}"
                    search_info = f"({result['search_type'].upper()}, Score: {result['score']:.3f})"
                    response_parts.append(f"{i}. {section_info} {search_info}")
                    
                    excerpt = result['document']['content'][:200] + "..." if len(result['document']['content']) > 200 else result['document']['content']
                    response_parts.append(f"   {excerpt}\n")
            
            response_parts.append("\nπŸ€– **Powered by Hybrid Search Technology**")
            response_parts.append("β€’ Vector Search: Semantic understanding with transformers")
            response_parts.append("β€’ BM25 Search: Advanced keyword ranking")
            response_parts.append("β€’ Smart Fusion: Optimal relevance through weighted combination")
            
            return "\n".join(response_parts)
        else:
            return "I don't have specific information about that topic in my knowledge base. Could you please ask something else about Raktim Mondol?"
        
    except Exception as e:
        logger.error(f"Error in chat interface: {e}")
        return "I'm sorry, I encountered an error while processing your question. Please try again."

# Create Gradio Interface with modern Gradio 5 features
with gr.Blocks(
    title="πŸ”₯ Hybrid Search RAGtim Bot",
    theme=gr.themes.Soft(),
    css="""

    .gradio-container {

        max-width: 1200px !important;

    }

    .chat-container {

        height: 600px;

    }

    """
) as demo:
    
    gr.Markdown("""

    # πŸ”₯ Hybrid Search RAGtim Bot

    

    **Advanced AI-powered search system combining semantic understanding with keyword precision**

    

    🧠 **Semantic Vector Search** + πŸ” **BM25 Keyword Search** = ⚑ **Optimal Results**

    

    Built with Gradio 5, featuring modern UI components and enhanced performance

    """)
    
    with gr.Tabs():
        with gr.Tab("πŸ’¬ Chat Interface"):
            gr.Markdown("### Ask anything about Raktim Mondol's research, skills, or experience")
            
            chatbot = gr.Chatbot(
                value=[],
                label="RAGtim Bot",
                height=400,
                show_copy_button=True,
                bubble_full_width=False
            )
            
            with gr.Row():
                msg = gr.Textbox(
                    label="Your Question",
                    placeholder="What would you like to know about Raktim's research or expertise?",
                    scale=4,
                    lines=2
                )
                submit_btn = gr.Button("Ask", variant="primary", scale=1)
            
            gr.Examples(
                examples=[
                    "What is Raktim's research in LLMs and RAG?",
                    "Tell me about BioFusionNet and statistical methods",
                    "What are his multimodal AI capabilities?",
                    "Describe his biostatistics expertise"
                ],
                inputs=msg
            )
            
            def respond(message, history):
                response = chat_interface(message)
                history.append((message, response))
                return history, ""
            
            submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
            msg.submit(respond, [msg, chatbot], [chatbot, msg])
        
        with gr.Tab("πŸ” Advanced Search API"):
            gr.Markdown("### Direct access to the hybrid search engine")
            
            with gr.Row():
                with gr.Column(scale=2):
                    search_query = gr.Textbox(
                        label="Search Query",
                        placeholder="Enter your search query here..."
                    )
                    
                    with gr.Row():
                        search_type = gr.Radio(
                            choices=["hybrid", "vector", "bm25"],
                            value="hybrid",
                            label="Search Method"
                        )
                        top_k = gr.Slider(
                            minimum=1, maximum=20, value=5, step=1,
                            label="Number of Results"
                        )
                    
                    with gr.Row():
                        vector_weight = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.6, step=0.1,
                            label="Vector Weight"
                        )
                        bm25_weight = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.4, step=0.1,
                            label="BM25 Weight"
                        )
                    
                    search_btn = gr.Button("πŸ” Search", variant="primary")
                
                with gr.Column(scale=3):
                    search_results = gr.JSON(
                        label="Search Results",
                        show_label=True
                    )
            
            search_btn.click(
                search_api,
                inputs=[search_query, top_k, search_type, vector_weight, bm25_weight],
                outputs=search_results
            )
        
        with gr.Tab("πŸ“Š System Statistics"):
            gr.Markdown("### Knowledge base and system information")
            
            stats_btn = gr.Button("πŸ“Š Get Statistics", variant="secondary")
            stats_output = gr.JSON(
                label="System Statistics",
                show_label=True
            )
            
            stats_btn.click(get_stats_api, outputs=stats_output)
            
            # Auto-load stats on tab open
            demo.load(get_stats_api, outputs=stats_output)

if __name__ == "__main__":
    logger.info("πŸš€ Launching Hybrid Search RAGtim Bot...")
    logger.info(f"πŸ“š Loaded {len(search_system.documents)} documents")
    logger.info(f"πŸ” BM25 index: {len(search_system.bm25_searcher.document_frequency)} unique terms")
    logger.info(f"🧠 Vector embeddings: {len(search_system.vector_searcher.embeddings)} documents")
    logger.info("πŸ”₯ Hybrid search ready!")
    
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        show_api=True
    )