Spaces:
Running
Running
File size: 6,159 Bytes
a534ff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Technical Skills and Expertise
## Deep Learning and Machine Learning
### Core Frameworks
- **PyTorch**: Advanced proficiency in model development, custom layers, and distributed training
- **TensorFlow**: Experience with TensorFlow 2.x, Keras, and TensorFlow Serving
- **Hugging Face Transformers**: Fine-tuning, model deployment, and custom tokenizers
- **scikit-learn**: Classical ML algorithms, preprocessing, and model evaluation
### Specialized Techniques
- **Transfer Learning**: Pre-trained model adaptation, domain adaptation
- **Attention Mechanisms**: Self-attention, cross-attention, multi-head attention
- **Adversarial Training**: GANs, adversarial autoencoders, robust training
- **Multi-task Learning**: Joint optimization, task balancing, shared representations
- **Meta-Learning**: Few-shot learning, model-agnostic meta-learning
## Large Language Models and NLP
### LLM Technologies
- **Parameter-Efficient Fine-tuning**: LoRA, QLoRA, AdaLoRA, Prefix tuning
- **Quantization**: GPTQ, GGUF, 8-bit and 4-bit quantization
- **Model Optimization**: Pruning, distillation, efficient architectures
- **Prompt Engineering**: Chain-of-thought, few-shot prompting, instruction tuning
### NLP Applications
- **Text Generation**: Controlled generation, style transfer, summarization
- **Information Extraction**: Named entity recognition, relation extraction
- **Question Answering**: Reading comprehension, open-domain QA
- **Sentiment Analysis**: Aspect-based sentiment, emotion detection
## Computer Vision and Medical Imaging
### Vision Architectures
- **Convolutional Networks**: ResNet, DenseNet, EfficientNet, Vision Transformers
- **Object Detection**: YOLO, R-CNN family, DETR
- **Segmentation**: U-Net, Mask R-CNN, Segment Anything Model (SAM)
- **Medical Imaging**: Specialized architectures for histopathology, radiology
### Image Processing
- **Preprocessing**: Normalization, augmentation, color space conversion
- **Feature Extraction**: SIFT, HOG, deep features
- **Registration**: Image alignment, geometric transformations
- **Quality Assessment**: Blur detection, artifact identification
## Multimodal AI and Fusion
### Multimodal Architectures
- **Vision-Language Models**: CLIP, BLIP, LLaVA, DALL-E
- **Fusion Strategies**: Early fusion, late fusion, attention-based fusion
- **Cross-modal Retrieval**: Image-text matching, semantic search
- **Multimodal Generation**: Text-to-image, image captioning
### Data Integration
- **Heterogeneous Data**: Combining images, text, tabular data
- **Temporal Fusion**: Time-series integration, sequential modeling
- **Graph Neural Networks**: Relational data modeling, knowledge graphs
## Retrieval-Augmented Generation (RAG)
### Vector Databases
- **FAISS**: Efficient similarity search, index optimization
- **ChromaDB**: Document storage and retrieval
- **Weaviate**: Vector search with filtering
- **Milvus**: Scalable vector database management
### Retrieval Techniques
- **Dense Retrieval**: Bi-encoder architectures, contrastive learning
- **Sparse Retrieval**: BM25, TF-IDF, keyword matching
- **Hybrid Search**: Combining dense and sparse methods
- **Re-ranking**: Cross-encoder models, relevance scoring
### RAG Optimization
- **Chunk Strategies**: Document segmentation, overlap handling
- **Embedding Models**: Sentence transformers, domain-specific embeddings
- **Query Enhancement**: Query expansion, reformulation
- **Context Management**: Relevance filtering, context compression
## Bioinformatics and Computational Biology
### Genomics
- **Sequence Analysis**: Alignment algorithms, variant calling
- **Gene Expression**: RNA-seq analysis, differential expression
- **Pathway Analysis**: Enrichment analysis, network biology
- **Population Genetics**: GWAS, linkage analysis
### Proteomics
- **Protein Structure**: Structure prediction, folding analysis
- **Mass Spectrometry**: Data processing, protein identification
- **Protein-Protein Interactions**: Network analysis, functional prediction
### Systems Biology
- **Network Analysis**: Graph theory, centrality measures
- **Mathematical Modeling**: Differential equations, stochastic models
- **Multi-omics Integration**: Data fusion, pathway reconstruction
## Cloud Computing and MLOps
### Cloud Platforms
- **AWS**: EC2, S3, SageMaker, Lambda, ECS
- **Google Cloud**: Compute Engine, Cloud Storage, Vertex AI
- **Azure**: Virtual Machines, Blob Storage, Machine Learning Studio
### MLOps Tools
- **Model Versioning**: MLflow, DVC, Weights & Biases
- **Containerization**: Docker, Kubernetes, container orchestration
- **CI/CD**: GitHub Actions, Jenkins, automated testing
- **Monitoring**: Model drift detection, performance monitoring
### Distributed Computing
- **Parallel Processing**: Multi-GPU training, data parallelism
- **Cluster Computing**: Spark, Dask, distributed training
- **Resource Management**: SLURM, job scheduling, resource optimization
## Programming and Software Development
### Programming Languages
- **Python**: Advanced proficiency, scientific computing, web development
- **R**: Statistical analysis, bioinformatics packages, visualization
- **SQL**: Database design, query optimization, data warehousing
- **JavaScript/TypeScript**: Web development, Node.js, React
- **Bash/Shell**: System administration, automation scripts
### Development Tools
- **Version Control**: Git, GitHub, collaborative development
- **IDEs**: VS Code, PyCharm, Jupyter notebooks
- **Documentation**: Sphinx, MkDocs, technical writing
- **Testing**: Unit testing, integration testing, test-driven development
## Research and Academic Skills
### Research Methodology
- **Experimental Design**: Hypothesis testing, statistical power analysis
- **Literature Review**: Systematic reviews, meta-analysis
- **Peer Review**: Journal reviewing, conference reviewing
- **Grant Writing**: Research proposals, funding applications
### Communication
- **Technical Writing**: Research papers, documentation, tutorials
- **Presentations**: Conference talks, poster presentations
- **Teaching**: Course development, student mentoring
- **Collaboration**: Interdisciplinary research, team leadership |