ragtim-bot / app.py
raktimhugging's picture
Update app.py
39dacf3 verified
raw
history blame
26.2 kB
import gradio as gr
import json
import numpy as np
from transformers import pipeline
import torch
import os
from typing import List, Dict, Any
import time
import requests
import re
import math
from collections import defaultdict, Counter
import logging
# Import configuration
from config import *
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure device
device = get_device()
logger.info(f"Using device: {device}")
class HybridSearchRAGBot:
def __init__(self):
self.embedder = None
self.knowledge_base = []
self.embeddings = []
# BM25 components
self.term_frequencies = {}
self.document_frequency = {}
self.document_lengths = {}
self.average_doc_length = 0
self.total_documents = 0
# BM25 parameters
self.k1 = BM25_K1
self.b = BM25_B
self.initialize_models()
self.load_markdown_knowledge_base()
self.build_bm25_index()
def initialize_models(self):
"""Initialize the embedding model"""
try:
logger.info("Loading embedding model...")
self.embedder = pipeline(
'feature-extraction',
EMBEDDING_MODEL,
device=0 if device == "cuda" else -1
)
logger.info("βœ… Embedding model loaded successfully")
except Exception as e:
logger.error(f"❌ Error loading embedding model: {e}")
raise e
def load_markdown_knowledge_base(self):
"""Load knowledge base from markdown files"""
logger.info("Loading knowledge base from markdown files...")
# Reset knowledge base
self.knowledge_base = []
for filename in KNOWLEDGE_BASE_FILES:
try:
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
self.process_markdown_file(content, os.path.basename(filename))
logger.info(f"βœ… Loaded {filename}")
else:
logger.warning(f"⚠️ File not found: {filename}")
except Exception as e:
logger.error(f"❌ Error loading {filename}: {e}")
# Generate embeddings for knowledge base
logger.info("Generating embeddings for knowledge base...")
self.embeddings = []
for i, doc in enumerate(self.knowledge_base):
try:
# Truncate content to avoid token limit issues
content = doc["content"][:500]
embedding = self.embedder(content, return_tensors="pt")
# Convert to numpy and flatten
embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
self.embeddings.append(embedding_np)
except Exception as e:
logger.error(f"Error generating embedding for doc {doc['id']}: {e}")
# Fallback to zero embedding
self.embeddings.append(np.zeros(EMBEDDING_DIM))
self.total_documents = len(self.knowledge_base)
logger.info(f"βœ… Knowledge base loaded with {len(self.knowledge_base)} documents")
def process_markdown_file(self, content: str, filename: str):
"""Process a markdown file and extract sections"""
file_type, priority = FILE_TYPE_MAP.get(filename, ('general', 5))
# Split content into sections
sections = self.split_markdown_into_sections(content)
for section in sections:
if len(section['content'].strip()) > 100:
doc = {
"id": f"{filename}_{section['title']}_{len(self.knowledge_base)}",
"content": section['content'],
"metadata": {
"type": file_type,
"priority": priority,
"section": section['title'],
"source": filename
}
}
self.knowledge_base.append(doc)
def split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
"""Split markdown content into sections based on headers"""
sections = []
lines = content.split('\n')
current_section = {'title': 'Introduction', 'content': ''}
for line in lines:
if line.startswith('#'):
if current_section['content'].strip():
sections.append(current_section.copy())
title = line.lstrip('#').strip()
current_section = {
'title': title,
'content': line + '\n'
}
else:
current_section['content'] += line + '\n'
if current_section['content'].strip():
sections.append(current_section)
return sections
def tokenize(self, text: str) -> List[str]:
"""Tokenize text for BM25"""
text = re.sub(r'[^\w\s]', ' ', text.lower())
words = [word for word in text.split() if len(word) > 2 and not self.is_stop_word(word)]
return words
def is_stop_word(self, word: str) -> bool:
"""Check if word is a stop word"""
stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
'will', 'would', 'could', 'should', 'may', 'might', 'can', 'this', 'that', 'these', 'those',
'from', 'up', 'out', 'down', 'off', 'over', 'under', 'again', 'further', 'then', 'once'
}
return word in stop_words
def build_bm25_index(self):
"""Build BM25 index for all documents"""
logger.info("Building BM25 index...")
self.term_frequencies = {}
self.document_frequency = defaultdict(int)
self.document_lengths = {}
total_length = 0
for doc in self.knowledge_base:
doc_id = doc['id']
terms = self.tokenize(doc['content'])
term_freq = Counter(terms)
self.term_frequencies[doc_id] = dict(term_freq)
doc_length = len(terms)
self.document_lengths[doc_id] = doc_length
total_length += doc_length
unique_terms = set(terms)
for term in unique_terms:
self.document_frequency[term] += 1
self.average_doc_length = total_length / self.total_documents if self.total_documents > 0 else 0
logger.info(f"βœ… BM25 index built: {len(self.document_frequency)} unique terms, avg doc length: {self.average_doc_length:.1f}")
def calculate_bm25_score(self, term: str, doc_id: str) -> float:
"""Calculate BM25 score for a term in a document"""
tf = self.term_frequencies.get(doc_id, {}).get(term, 0)
if tf == 0:
return 0.0
df = self.document_frequency.get(term, 1)
doc_length = self.document_lengths.get(doc_id, 0)
idf = math.log((self.total_documents - df + 0.5) / (df + 0.5))
numerator = tf * (self.k1 + 1)
denominator = tf + self.k1 * (1 - self.b + self.b * (doc_length / self.average_doc_length))
return idf * (numerator / denominator)
def bm25_search(self, query: str, top_k: int = 10) -> List[Dict]:
"""Perform BM25 search"""
query_terms = self.tokenize(query)
if not query_terms:
return []
scores = {}
for doc in self.knowledge_base:
doc_id = doc['id']
score = 0.0
for term in query_terms:
score += self.calculate_bm25_score(term, doc_id)
if score > 0:
priority_boost = 1 + (doc['metadata']['priority'] / 50)
final_score = score * priority_boost
scores[doc_id] = {
'document': doc,
'score': final_score,
'search_type': 'bm25'
}
sorted_results = sorted(scores.values(), key=lambda x: x['score'], reverse=True)
return sorted_results[:top_k]
def cosine_similarity(self, a, b):
"""Calculate cosine similarity between two vectors"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def vector_search(self, query: str, top_k: int = 10) -> List[Dict]:
"""Perform vector similarity search"""
try:
query_embedding = self.embedder(query[:500], return_tensors="pt")
query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
similarities = []
for i, doc_embedding in enumerate(self.embeddings):
if doc_embedding is not None and len(doc_embedding) > 0:
similarity = self.cosine_similarity(query_vector, doc_embedding)
priority_boost = 1 + (self.knowledge_base[i]['metadata']['priority'] / 100)
final_score = similarity * priority_boost
similarities.append({
'document': self.knowledge_base[i],
'score': float(final_score),
'search_type': 'vector'
})
similarities.sort(key=lambda x: x['score'], reverse=True)
return similarities[:top_k]
except Exception as e:
logger.error(f"Error in vector search: {e}")
return []
def hybrid_search(self, query: str, top_k: int = 10, vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict]:
"""Perform hybrid search combining vector and BM25 results"""
try:
vector_results = self.vector_search(query, top_k * 2)
bm25_results = self.bm25_search(query, top_k * 2)
# Normalize scores
if vector_results:
max_vector_score = max(r['score'] for r in vector_results)
if max_vector_score > 0:
for result in vector_results:
result['normalized_score'] = result['score'] / max_vector_score
else:
for result in vector_results:
result['normalized_score'] = 0
if bm25_results:
max_bm25_score = max(r['score'] for r in bm25_results)
if max_bm25_score > 0:
for result in bm25_results:
result['normalized_score'] = result['score'] / max_bm25_score
else:
for result in bm25_results:
result['normalized_score'] = 0
# Combine results
combined_scores = {}
for result in vector_results:
doc_id = result['document']['id']
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': result['normalized_score'],
'bm25_score': 0.0,
'search_type': 'vector'
}
for result in bm25_results:
doc_id = result['document']['id']
if doc_id in combined_scores:
combined_scores[doc_id]['bm25_score'] = result['normalized_score']
combined_scores[doc_id]['search_type'] = 'hybrid'
else:
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': 0.0,
'bm25_score': result['normalized_score'],
'search_type': 'bm25'
}
# Calculate final hybrid scores
final_results = []
for doc_id, data in combined_scores.items():
hybrid_score = (vector_weight * data['vector_score']) + (bm25_weight * data['bm25_score'])
final_results.append({
'document': data['document'],
'score': hybrid_score,
'vector_score': data['vector_score'],
'bm25_score': data['bm25_score'],
'search_type': data['search_type']
})
final_results.sort(key=lambda x: x['score'], reverse=True)
return final_results[:top_k]
except Exception as e:
logger.error(f"Error in hybrid search: {e}")
return self.vector_search(query, top_k)
def search_knowledge_base(self, query: str, top_k: int = 5, search_type: str = "hybrid") -> List[Dict]:
"""Search the knowledge base using specified method"""
if search_type == "vector":
return self.vector_search(query, top_k)
elif search_type == "bm25":
return self.bm25_search(query, top_k)
else:
return self.hybrid_search(query, top_k)
# Initialize the bot
logger.info("Initializing Hybrid Search RAGtim Bot...")
bot = HybridSearchRAGBot()
# API Functions
def search_api(query, top_k=5, search_type="hybrid", vector_weight=0.6, bm25_weight=0.4):
"""API endpoint for hybrid search functionality"""
try:
if search_type == "hybrid":
results = bot.hybrid_search(query, top_k, vector_weight, bm25_weight)
else:
results = bot.search_knowledge_base(query, top_k, search_type)
return {
"results": results,
"query": query,
"top_k": top_k,
"search_type": search_type,
"total_documents": len(bot.knowledge_base),
"search_parameters": {
"vector_weight": vector_weight if search_type == "hybrid" else None,
"bm25_weight": bm25_weight if search_type == "hybrid" else None,
"bm25_k1": bot.k1,
"bm25_b": bot.b
}
}
except Exception as e:
logger.error(f"Error in search API: {e}")
return {"error": str(e), "results": []}
def get_stats_api():
"""API endpoint for knowledge base statistics"""
try:
doc_types = {}
sections_by_file = {}
for doc in bot.knowledge_base:
doc_type = doc["metadata"]["type"]
source_file = doc["metadata"]["source"]
doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
return {
"total_documents": len(bot.knowledge_base),
"document_types": doc_types,
"sections_by_file": sections_by_file,
"model_name": EMBEDDING_MODEL,
"embedding_dimension": EMBEDDING_DIM,
"search_capabilities": [
"Hybrid Search (Vector + BM25)",
"Semantic Vector Search",
"BM25 Keyword Search",
"GPU Accelerated",
"Transformer Embeddings"
],
"bm25_parameters": {
"k1": bot.k1,
"b": bot.b,
"unique_terms": len(bot.document_frequency),
"average_doc_length": bot.average_doc_length
},
"backend_type": "Hugging Face Space with Hybrid Search",
"knowledge_sources": list(sections_by_file.keys()),
"status": "healthy"
}
except Exception as e:
logger.error(f"Error in get_stats_api: {e}")
return {
"error": str(e),
"status": "error",
"total_documents": 0,
"search_capabilities": ["Error"]
}
def chat_interface(message, history):
"""Chat interface with hybrid search"""
if not message.strip():
return "Please ask me something about Raktim Mondol! I use hybrid search combining semantic similarity and keyword matching for the best results."
try:
search_results = bot.hybrid_search(message, top_k=6)
if search_results:
response_parts = []
response_parts.append(f"πŸ” **Hybrid Search Results** (Vector + BM25 combination, found {len(search_results)} relevant sections):\n")
best_match = search_results[0]
response_parts.append(f"**Primary Answer** (Hybrid Score: {best_match['score']:.3f}):")
response_parts.append(f"πŸ“„ Source: {best_match['document']['metadata']['source']} - {best_match['document']['metadata']['section']}")
response_parts.append(f"πŸ” Search Type: {best_match['search_type'].upper()}")
if 'vector_score' in best_match and 'bm25_score' in best_match:
response_parts.append(f"πŸ“Š Vector Score: {best_match['vector_score']:.3f} | BM25 Score: {best_match['bm25_score']:.3f}")
response_parts.append(f"\n{best_match['document']['content']}\n")
if len(search_results) > 1:
response_parts.append("**Additional Context:**")
for i, result in enumerate(search_results[1:3], 1):
section_info = f"{result['document']['metadata']['source']} - {result['document']['metadata']['section']}"
search_info = f"({result['search_type'].upper()}, Score: {result['score']:.3f})"
response_parts.append(f"{i}. {section_info} {search_info}")
excerpt = result['document']['content'][:200] + "..." if len(result['document']['content']) > 200 else result['document']['content']
response_parts.append(f" {excerpt}\n")
response_parts.append("\nπŸ€– **Hybrid Search Technology:**")
response_parts.append("β€’ **Vector Search**: Semantic similarity using transformer embeddings")
response_parts.append("β€’ **BM25 Search**: Advanced keyword ranking with TF-IDF")
response_parts.append("β€’ **Fusion**: Weighted combination for optimal relevance")
response_parts.append("\n[Note: This demonstrates hybrid search results. In production, these would be passed to an LLM for natural response generation.]")
return "\n".join(response_parts)
else:
return "I don't have specific information about that topic in my knowledge base. Could you please ask something else about Raktim Mondol?"
except Exception as e:
logger.error(f"Error in chat interface: {e}")
return "I'm sorry, I encountered an error while processing your question. Please try again."
# Gradio Interface
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.search-type-radio .wrap {
display: flex;
gap: 10px;
}
.search-weights {
background: #f0f0f0;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
"""
# Create the main chat interface
with gr.Blocks(
title="πŸ”₯ Hybrid Search RAGtim Bot",
css=css,
theme=gr.themes.Soft(
primary_hue="green",
secondary_hue="blue",
neutral_hue="slate"
)
) as chat_demo:
gr.Markdown(f"""
# πŸ”₯ Hybrid Search RAGtim Bot - Advanced Search Technology
**πŸš€ Hybrid Search System**: This Space implements **true hybrid search** combining:
- 🧠 **Semantic Vector Search**: Transformer embeddings for conceptual similarity
- πŸ” **BM25 Keyword Search**: Advanced TF-IDF ranking for exact term matching
- βš–οΈ **Intelligent Fusion**: Weighted combination for optimal relevance
**πŸ“š Knowledge Base**: **{len(bot.knowledge_base)} sections** from comprehensive markdown files
**πŸ”§ Search Parameters**:
- **BM25 Parameters**: k1={bot.k1}, b={bot.b}
- **Vocabulary**: {len(bot.document_frequency)} unique terms
- **Average Document Length**: {bot.average_doc_length:.1f} words
- **Embedding Model**: {EMBEDDING_MODEL} ({EMBEDDING_DIM}-dim)
**Ask me anything about Raktim Mondol's research, expertise, and background!**
""")
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about Raktim's research, LLM expertise, publications, statistical methods...",
container=False,
scale=7,
show_label=False
)
submit_btn = gr.Button("πŸ” Hybrid Search", scale=1)
# Example buttons
with gr.Row():
examples = [
"What is Raktim's LLM and RAG research?",
"Tell me about BioFusionNet statistical methods",
"What are his multimodal AI capabilities?",
"Describe his biostatistics expertise"
]
for example in examples:
gr.Button(example, size="sm").click(
lambda x=example: x, outputs=msg
)
def respond(message, history):
if not message.strip():
return history, ""
history.append({"role": "user", "content": message})
bot_response = chat_interface(message, history)
history.append({"role": "assistant", "content": bot_response})
return history, ""
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
msg.submit(respond, [msg, chatbot], [chatbot, msg])
# Advanced search interface
with gr.Blocks(title="πŸ”§ Advanced Hybrid Search") as search_demo:
gr.Markdown("# πŸ”§ Advanced Hybrid Search Configuration")
with gr.Row():
with gr.Column(scale=2):
search_input = gr.Textbox(
label="Search Query",
placeholder="Enter your search query about Raktim Mondol..."
)
with gr.Row():
search_type = gr.Radio(
choices=["hybrid", "vector", "bm25"],
value="hybrid",
label="Search Method"
)
top_k_slider = gr.Slider(
minimum=1,
maximum=15,
value=5,
step=1,
label="Top K Results"
)
with gr.Group(visible=True) as weight_group:
gr.Markdown("**Hybrid Search Weights**")
vector_weight = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.6,
step=0.1,
label="Vector Weight (Semantic)"
)
bm25_weight = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.4,
step=0.1,
label="BM25 Weight (Keyword)"
)
with gr.Column(scale=1):
gr.Markdown("**Search Method Guide:**")
gr.Markdown("""
**πŸ”₯ Hybrid**: Combines semantic + keyword
- Best for most queries
- Balances meaning and exact terms
**🧠 Vector**: Pure semantic similarity
- Good for conceptual questions
- Finds related concepts
**πŸ” BM25**: Pure keyword matching
- Good for specific terms
- Traditional search ranking
""")
search_output = gr.JSON(label="Hybrid Search Results", height=400)
search_btn = gr.Button("πŸ” Search with Custom Parameters", variant="primary")
def update_weights_visibility(search_type):
return gr.Group(visible=(search_type == "hybrid"))
search_type.change(update_weights_visibility, inputs=[search_type], outputs=[weight_group])
def normalize_weights(vector_w, bm25_w):
total = vector_w + bm25_w
if total > 0:
return vector_w / total, bm25_w / total
return 0.6, 0.4
def advanced_search(query, search_type, top_k, vector_w, bm25_w):
vector_weight, bm25_weight = normalize_weights(vector_w, bm25_w)
return search_api(query, top_k, search_type, vector_weight, bm25_weight)
search_btn.click(
advanced_search,
inputs=[search_input, search_type, top_k_slider, vector_weight, bm25_weight],
outputs=search_output
)
# Stats interface
with gr.Blocks(title="πŸ“Š System Statistics") as stats_demo:
gr.Markdown("# πŸ“Š Hybrid Search System Statistics")
stats_output = gr.JSON(label="System Statistics", height=500)
stats_btn = gr.Button("πŸ“Š Get System Statistics", variant="primary")
stats_btn.click(get_stats_api, inputs=[], outputs=stats_output)
# Main demo with tabs
demo = gr.TabbedInterface(
[chat_demo, search_demo, stats_demo],
["πŸ’¬ Hybrid Chat", "πŸ”§ Advanced Search", "πŸ“Š Statistics"],
title="πŸ”₯ Hybrid Search RAGtim Bot - Vector + BM25 Fusion"
)
# Launch the application
if __name__ == "__main__":
logger.info("πŸš€ Launching Hybrid Search RAGtim Bot...")
logger.info(f"πŸ“š Loaded {len(bot.knowledge_base)} sections from markdown files")
logger.info(f"πŸ” BM25 index: {len(bot.document_frequency)} unique terms")
logger.info(f"🧠 Vector embeddings: {len(bot.embeddings)} documents")
logger.info("πŸ”₯ Hybrid search ready: Semantic + Keyword fusion!")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)