ragtim-bot / app.py
raktimhugging's picture
Update app.py
be1c5c4 verified
raw
history blame
761 Bytes
import gradio as gr
import requests
import json
from transformers import pipeline
import os
# Initialize the embedding model
embedder = pipeline('feature-extraction', 'sentence-transformers/all-MiniLM-L6-v2')
# Your knowledge base and search logic here
def search_knowledge_base(query):
# Implement your search logic
return f"Search results for: {query}"
def chat_interface(message, history):
# Your RAG logic here
response = search_knowledge_base(message)
return response
# Create Gradio interface
iface = gr.ChatInterface(
fn=chat_interface,
title="RAGtim Bot - Raktim's AI Assistant",
description="Ask me anything about Raktim Mondol's research, experience, and expertise!"
)
if __name__ == "__main__":
iface.launch()